Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination

    公开(公告)号:US11566937B2

    公开(公告)日:2023-01-31

    申请号:US16879505

    申请日:2020-05-20

    Abstract: Aspects of the present disclosure describe Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination. In illustrative configurations, systems, methods, and structures according to the present disclosure employ a two stage modulation arrangement providing short interrogator pulses resulting in a greater number of sensing data points and reduced effective sectional length. The increased number of data points are used to mitigate Rayleigh fading via a spatial combining process, multi-location-beating combining (MLBC) which uses weighted complex-valued DAS beating results from neighboring locations and aligns phase signals of each of the locations, before combining them to produce a final DAS phase measurement. Since Rayleigh scattering is a random statistic, the MLBC process allows capture of different statics from neighboring locations with correlated vibration/acoustic signal. The combined DAS results minimize a total Rayleigh fade, in both dynamic fading and static fading scenarios.

    Frequency-drift compensation in chirped-pulse-based distributed acoustic sensing

    公开(公告)号:US12135234B2

    公开(公告)日:2024-11-05

    申请号:US17967812

    申请日:2022-10-17

    Abstract: Aspects of the present disclosure directed to frequency drift compensation for coded-DAS systems that use chirped pulses as a probe signal. Our inventive approach estimates timing jitter by correlating the amplitude of the estimated Rayleigh impulse response of every frame with a reference frame, and then re-aligns each frame by the estimated timing jitter. As the amount of timing jitter varies within a frame, every frame is divided into blocks where all samples have similar timing jitter, and perform timing jitter estimation and compensation on a block-by-block, frame-by-frame basis using an overlap-and-save method. Tracking of a slowly changing channel is enabled by allowing the reference frame to be periodically updated.

Patent Agency Ranking