Abstract:
A wavelength conversion member manufacturing method includes: providing the wavelength conversion member having an upper surface, the wavelength conversion member including a phosphor portion, and a light-transmissive portion configured to transmit fluorescence from the phosphor portion; and forming, in the wavelength conversion member, at least one depressed portion each having an inclined surface inclined with respect to the upper surface by irradiating the wavelength conversion member with a pulsed laser beam from above more than once to form a plurality of continuous machining marks at different processing depths.
Abstract:
A light emitting device includes: a base member; a laser element disposed on or above a mounting surface of the base member; a fluorescent member including a first main surface and a second main surface respectively positioned on opposite sides of the fluorescent member, the second main surface being fixed to the mounting surface of the base member; a first optical member configured to change a traveling direction of laser light emitted by the laser element to be directed toward the first main surface of the fluorescent member; and a lid connected to the base member and enclosing the laser element, the fluorescent member, and the first optical member in a space beneath the lid, the lid being configured to transmit light from the fluorescent member.
Abstract:
A semiconductor laser device can include an insulating single crystal SiC having a first surface, a second surface, and micropipes having openings in the first surface and the second surface. A conductive base can be provided on a side of the first surface of the single crystal SiC, and a semiconductor laser element can be provided on a side of the second surface of the single crystal SiC. An insulating member can be formed in the micropipes.
Abstract:
A semiconductor laser device can include an insulating single crystal SiC having a first surface, a second surface, and micropipes having openings in the first surface and the second surface. A conductive base can be provided on a side of the first surface of the single crystal SiC, and a semiconductor laser element can be provided on a side of the second surface of the single crystal SiC. An insulating member can be formed in the micropipes.