Abstract:
In various examples, metadata may be generated corresponding to compressed data streams that are compressed according to serial compression algorithms—such as arithmetic encoding, entropy encoding, etc.—in order to allow for parallel decompression of the compressed data. As a result, modification to the compressed data stream itself may not be required, and bandwidth and storage requirements of the system may be minimally impacted. In addition, by parallelizing the decompression, the system may benefit from faster decompression times while also reducing or entirely removing the adoption cycle for systems using the metadata for parallel decompression.
Abstract:
A method, system, and computer-program product are provided to enable the yielding by threads executing in a processing unit to transfer control to a host processor. The method includes the steps of receiving an intermediate representation of a program, replacing a yield instruction in the intermediate representation with a yield operation that includes one or more instructions, and compiling at least a portion of the modified intermediate representation into a machine code for execution on a parallel processing unit.
Abstract:
In various examples, shader bindings may be recorded in a shader binding table that includes shader records. Geometry of a 3D scene may be instantiated using object instances, and each may be associated with a respective set of the shader records using a location identifier of the set of shader records in memory. The set of shader records may represent shader bindings for an object instance under various predefined conditions. One or more of these predefined conditions may be implicit in the way the shader records are arranged in memory (e.g., indexed by ray type, by sub-geometry, etc.). For example, a section selector value (e.g., a section index) may be computed to locate and select a shader record based at least in part on a result of a ray tracing query (e.g., what sub-geometry was hit, what ray type was traced, etc.).
Abstract:
In various examples, shader bindings may be recorded in a shader binding table that includes shader records. Geometry of a 3D scene may be instantiated using object instances, and each may be associated with a respective set of the shader records using a location identifier of the set of shader records in memory. The set of shader records may represent shader bindings for an object instance under various predefined conditions. One or more of these predefined conditions may be implicit in the way the shader records are arranged in memory (e.g., indexed by ray type, by sub-geometry, etc.). For example, a section selector value (e.g., a section index) may be computed to locate and select a shader record based at least in part on a result of a ray tracing query (e.g., what sub-geometry was hit, what ray type was traced, etc.).
Abstract:
In various examples, shader bindings may be recorded in a shader binding table that includes shader records. Geometry of a 3D scene may be instantiated using object instances, and each may be associated with a respective set of the shader records using a location identifier of the set of shader records in memory. The set of shader records may represent shader bindings for an object instance under various predefined conditions. One or more of these predefined conditions may be implicit in the way the shader records are arranged in memory (e.g., indexed by ray type, by sub-geometry, etc.). For example, a section selector value (e.g., a section index) may be computed to locate and select a shader record based at least in part on a result of a ray tracing query (e.g., what sub-geometry was hit, what ray type was traced, etc.).
Abstract:
A material representation data structure and a method of representing a material for digital image synthesis. The data structure may be embodied in a graphics processing subsystem, including: (1) a memory configured to store a material representation data structure according to which a material is declaratively represented by a property indicative of an interaction between the material and light, and (2) a processor operable to gain access to the memory and employ the property in a rendering procedure defined independent of the material representation data structure and designed to effect the interaction.