SHAPE FUSION FOR IMAGE ANALYSIS
    12.
    发明申请

    公开(公告)号:US20250139783A1

    公开(公告)日:2025-05-01

    申请号:US18943472

    申请日:2024-11-11

    Abstract: Various types of image analysis benefit from a multi-stream architecture that allows the analysis to consider shape data. A shape stream can process image data in parallel with a primary stream, where data from layers of a network in the primary stream is provided as input to a network of the shape stream. The shape data can be fused with the primary analysis data to produce more accurate output, such as to produce accurate boundary information when the shape data is used with semantic segmentation data produced by the primary stream. A gate structure can be used to connect the intermediate layers of the primary and shape streams, using higher level activations to gate lower level activations in the shape stream. Such a gate structure can help focus the shape stream on the relevant information and reduces any additional weight of the shape stream.

    Switchable propagation neural network

    公开(公告)号:US11328169B2

    公开(公告)日:2022-05-10

    申请号:US16353835

    申请日:2019-03-14

    Abstract: A temporal propagation network (TPN) system learns the affinity matrix for video image processing tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The TPN system includes a guidance neural network model and a temporal propagation module and is trained for a particular computer vision task to propagate visual properties from a key-frame represented by dense data (color), to another frame that is represented by coarse data (grey-scale). The guidance neural network model generates an affinity matrix referred to as a global transformation matrix from task-specific data for the key-frame and the other frame. The temporal propagation module applies the global transformation matrix to the key-frame property data to produce propagated property data (color) for the other frame. For example, the TPN system may be used to colorize several frames of greyscale video using a single manually colorized key-frame.

    SWITCHABLE PROPAGATION NEURAL NETWORK

    公开(公告)号:US20210073575A1

    公开(公告)日:2021-03-11

    申请号:US17081805

    申请日:2020-10-27

    Abstract: A temporal propagation network (TPN) system learns the affinity matrix for video image processing tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The TPN system includes a guidance neural network model and a temporal propagation module and is trained for a particular computer vision task to propagate visual properties from a key-frame represented by dense data (color), to another frame that is represented by coarse data (grey-scale). The guidance neural network model generates an affinity matrix referred to as a global transformation matrix from task-specific data for the key-frame and the other frame. The temporal propagation module applies the global transformation matrix to the key-frame property data to produce propagated property data (color) for the other frame. For example, the TPN system may be used to colorize several frames of greyscale video using a single manually colorized key-frame.

    SCENE FLOW ESTIMATION USING SHARED FEATURES
    15.
    发明申请

    公开(公告)号:US20200084427A1

    公开(公告)日:2020-03-12

    申请号:US16569104

    申请日:2019-09-12

    Abstract: Scene flow represents the three-dimensional (3D) structure and movement of objects in a video sequence in three dimensions from frame-to-frame and is used to track objects and estimate speeds for autonomous driving applications. Scene flow is recovered by a neural network system from a video sequence captured from at least two viewpoints (e.g., cameras), such as a left-eye and right-eye of a viewer. An encoder portion of the system extracts features from frames of the video sequence. The features are input to a first decoder to predict optical flow and a second decoder to predict disparity. The optical flow represents pixel movement in (x,y) and the disparity represents pixel movement in z (depth). When combined, the optical flow and disparity represent the scene flow.

    IMAGE SEGMENTATION USING A NEURAL NETWORK TRANSLATION MODEL

    公开(公告)号:US20220254029A1

    公开(公告)日:2022-08-11

    申请号:US17500338

    申请日:2021-10-13

    Abstract: The neural network includes an encoder, a common decoder, and a residual decoder. The encoder encodes input images into a latent space. The latent space disentangles unique features from other common features. The common decoder decodes common features resident in the latent space to generate translated images which lack the unique features. The residual decoder decodes unique features resident in the latent space to generate image deltas corresponding to the unique features. The neural network combines the translated images with the image deltas to generate combined images that may include both common features and unique features. The combined images can be used to drive autoencoding. Once training is complete, the residual decoder can be modified to generate segmentation masks that indicate any regions of a given input image where a unique feature resides.

Patent Agency Ranking