Abstract:
System and method for remotely performing a power cycle operation for a storage shelf of a storage server using a control path independent of a data path used for processing I/O requests is provided. The storage server maintains a data structure for storing information regarding a state of a plurality of power latches that are used to control power for the storage shelf having an alternate control path module for receiving control commands via the control path. Depending on the state of the plurality of power latches, the storage server sends one or more commands to the alternate control path module to turn off power to the storage shelf during a power cycle operation. When the power shelf is powered off, the storage server waits for a certain duration and then sends one or more power on commands to the alternate control path module to power on the storage shelf.
Abstract:
Technology is disclosed for recovering I/O modules in a storage system using in-band alternate control path (ACP) architecture (“the technology”). The technology enables a storage server to transmit control commands, e.g., for recovering an I/O module, to the I/O module over a data path that is typically used to transmit data commands. The control commands are typically transmitted using ACP that is separate from the data path. By enabling transmission of control commands over the data path, the technology eliminates the need for separate medium for ACP, at least in part, to transmit the control commands. The technology can be implemented in a pure in-band ACP mode, which supports recovering an I/O module of a storage shelf in which at least one I/O module is responsive, and/or in a mixed in-band ACP mode, which supports recovery of I/O modules of a storage shelf in which all I/O modules are non-responsive.
Abstract:
Methods and systems for a storage environment are provided. A policy for an input/output (I/O) stream having a plurality of I/O requests for accessing storage at a storage device of the storage sub-system is translated into flow attributes so that the I/O stream can be assigned to one of a plurality of queues maintained for placing I/O requests based on varying priorities defined by set polices. When an I/O request for the associated policy is received by the storage sub-system; the storage sub-system determines a flow attribute associated with the I/O request and the policy; selects a queue for staging the I/O request, such that the selected queue is of either higher priority than what is indicated by the flow attribute or at least of a same priority as indicated by the flow attribute; and allocates storage sub-system resource for processing the received I/O request.
Abstract:
Technology is disclosed for recovering I/O modules in a storage system using in-band alternate control path (ACP) architecture (“the technology”). The technology enables a storage server to transmit control commands, e.g., for recovering an I/O module, to the I/O module over a data path that is typically used to transmit data commands. The control commands are typically transmitted using ACP that is separate from the data path. By enabling transmission of control commands over the data path, the technology eliminates the need for separate medium for ACP, at least in part, to transmit the control commands. The technology can be implemented in a pure in-band ACP mode, which supports recovering an I/O module of a storage shelf in which at least one I/O module is responsive, and/or in a mixed in-band ACP mode, which supports recovery of I/O modules of a storage shelf in which all I/O modules are non-responsive.
Abstract:
Technology is disclosed for recovering I/O modules in a storage system using in-band alternate control path (ACP) architecture (“the technology”). The technology enables a storage server to transmit control commands, e.g., for recovering an I/O module, to the I/O module over a data path that is typically used to transmit data commands. The control commands are typically transmitted using ACP that is separate from the data path. By enabling transmission of control commands over the data path, the technology eliminates the need for separate medium for ACP, at least in part, to transmit the control commands. The technology can be implemented in a pure in-band ACP mode, which supports recovering an I/O module of a storage shelf in which at least one I/O module is responsive, and/or in a mixed in-band ACP mode, which supports recovery of I/O modules of a storage shelf in which all I/O modules are non-responsive.
Abstract:
System and method for remotely performing a power cycle operation for a storage shelf of a storage server using a control path independent of a data path used for processing I/O requests is provided. The storage server maintains a data structure for storing information regarding a state of a plurality of power latches that are used to control power for the storage shelf having an alternate control path module for receiving control commands via the control path. Depending on the state of the plurality of power latches, the storage server sends one or more commands to the alternate control path module to turn off power to the storage shelf during a power cycle operation. When the power shelf is powered off, the storage server waits for a certain duration and then sends one or more power on commands to the alternate control path module to power on the storage shelf.