Abstract:
A novel image sensor includes a pixel array, a row control circuit, a test signal injection circuit, a sampling circuit, an image processing circuit, a comparison circuit, and a control circuit. In a particular embodiment, the test signal injection circuit injects test signals into the pixel array, the sampling circuit acquires pixel data from the pixel array, and the comparison circuit compares the pixel data with the test signals. If the pixel data does not correspond to the test signals, the comparison circuit outputs an error signal. Additional comparison circuits are provided to detect defects in the control circuitry of an image sensor.
Abstract:
An example apparatus for random sampling for horizontal noise reduction includes readout circuitry coupled to receive image data from an array of pixels, the readout circuitry including a plurality of sample and hold (S&H) circuits coupled to respective ones of a plurality of bitlines to sample and hold the image data in response to a plurality of S&H control signals, each of the plurality of S&H circuits including an S&H capacitor and an S&H switch. The S&H capacitor samples and holds respective image data, and the S&H switch coupled between a respective bitline and to the respective S&H capacitor, and further coupled to receive a respective one of the plurality of S&H control signals to open/close the S&H switch, where each of the plurality of S&H switches are opened to decouple their respective S&H capacitors from the respective bitlines at a different.
Abstract:
A novel image sensor includes error detection circuitry for detecting sequencing errors. In a particular embodiment a pattern is inserted into a captured image and an image processor detects sequencing errors by determining a location of the pattern. In a more particular embodiment, the image sensor includes a pixel array, arranged in columns and rows. A row select signal is encoded as a bitwise signal, and the bitwise signal is decoded by a multi-input AND gate associated with a particular column of the image sensor, based on a relationship between rows and columns of the pixel array. The relationship determines the pattern asserted into the captured image.
Abstract:
A method of implementing Correlated Multi-Sampling (CMS) in an image sensor with improved analog-to-digital converter (ADC) linearity starts with an ADC circuitry included in a readout circuitry that generates a plurality of uncorrelated random numbers used as a plurality of ADC pedestals for sampling image data. A Successive Approximation Register (SAR) included in the ADC circuitry stores a different one of the ADC pedestals before each sampling of the image data. The ADC circuitry samples an image data from a row a plurality of times against plurality of ADC pedestals to obtain a plurality of sampled input data. The ADC circuitry converts each of the plurality of sampled input data from analog to digital, which includes performing a binary search using the SAR. Other embodiments are also described.
Abstract:
An image sensor, readout circuitry for an image sensor, and a method of operating readout circuitry are disclosed. Readout circuitry includes an analog-to-digital-converter (“ADC”) including input stage circuitry with a first selectable input and a second selectable input. The ADC is coupled to sequentially receive a first reset signal, a second reset signal, a high gain image signal, and a low gain image signal, in that order. The input stage circuitry is configured to select the first selectable input when receiving the first reset signal and the low gain image signal and select the second selectable input when receiving the second reset signal and the high gain image signal.
Abstract:
A novel image sensor includes a pixel array, a row control circuit, a test signal injection circuit, a sampling circuit, an image processing circuit, a comparison circuit, and a control circuit. In a particular embodiment, the test signal injection circuit injects test signals into the pixel array, the sampling circuit acquires pixel data from the pixel array, and the comparison circuit compares the pixel data with the test signals. If the pixel data does not correspond to the test signals, the comparison circuit outputs an error signal. Additional comparison circuits are provided to detect defects in the control circuitry of an image sensor.
Abstract:
An image sensor includes a pixel array having pixels arranged in rows and columns, a first successive-approximation-register (“SAR”) analog-to-digital-converter (“ADC”), a second SAR ADC, and first and second control circuitry. The first SAR ADC includes a first capacitor array (“FCA”) that shares a first common terminal coupled to a first comparator and coupled to receive first analog pixel signals. The second SAR ADC includes a second capacitor array (“SCA”) that shares a second common terminal selectably coupled to a second comparator and coupled to receive second analog pixel signals. The first and second control modules are coupled to selectably switch bottom plates of the FCA from a low reference voltage to the high reference voltage at a same time as selectably switching bottom plates of the SCA from a high reference voltage to the low reference voltage.