Abstract:
There is provided a signal processing device comprising a combination unit (3) configured to combine plural element signals based on plural physical quantity signals including signal components in accordance with desired physical quantities, respectively, by the number of times equal to or greater than a number of the plural physical quantity signals, and to output combined signals different from each other; a measuring unit (4) configured to sequentially receive the combined signals output from the combination unit (3); and a computing unit (5) configured to compute signal components based on the desired physical quantities from signals that are generated based on the combined signals sequentially output from the measuring unit.
Abstract:
The semiconductor device includes: an A/D conversion circuit for A/D-converting an analog input signal and outputting a resultant conversion result; and a computation circuit for performing, in synchronization with the A/D conversion circuit, computation for an updated conversion result without storing the updated conversion result every time the conversion result from the A/D conversion circuit is updated, to determine one computation result from a plurality of conversion results from the A/D conversion circuit and output the computation result.
Abstract:
A digital-to-analog converter of a pulse width modulation type in which a single counting cycle of a clock pulse counter is divided into 2.sup.m elementary periods where m represents a selected number of less significant bits of a digital input data to be converted into analog quantity and elementary pulses in number determined in dependence on the logic values of the more significant bits are distributed among the elementary periods, while supplementary elementary pulses are produced in the elementary periods selected in dependence on the logic values of the less significant bits of the digital input data. These elementary pulses are integrated for every elementary period and the integrated output value is converted into a corresponding DC analog output signal.
Abstract:
A cyclic analog to digital converter for digitizing an output from a photoplethysmography sensor has a buffer amplifier for setting a voltage of the feedback capacitance. Additionally, digital averaging circuit is preferably provided for averaging the digital output from the cyclic analog to digital converter for the several conversions. Finally, voting logic is additionally provided for declaring the digital bits based on successive comparisons by the one or more comparators.
Abstract:
An analog-to-digital converter circuit having a simple design and capable of preventing an increase in surface area and other problems. An analog-to-digital converter circuit for converting an analog input signal to a digital quantity includes an analog-to-digital converter unit that converts analog input signals to pre-correction digital values, and a corrector unit that digitally corrects the pre-connection digital values output from the analog-to-digital converter unit. The corrector unit includes a weighting coefficient multiplier unit that outputs a post-correction digital value obtained by multiplying the weighting coefficients provided for each bit by each bit of the pre-correction digital value output from the A/D converter unit and summing them, and a weighting coefficient search unit that searches for weighting coefficients so as to minimize an error signal generated based on the post-correction digital value and an approximate value for the post-correction digital value.
Abstract:
In an image pickup device, in a period for which a signal value of the comparison result signal is changed in a certain AD converter among a plurality of AD converters, the signal value of the comparison result signal changes a plurality of times in another AD converter.
Abstract:
An analog-to-digital converter circuit having a simple design and capable of preventing an increase in surface area and other problems. An analog-to-digital converter circuit for converting an analog input signal to a digital quantity includes an analog-to-digital converter unit that converts analog input signals to pre-correction digital values, and a corrector unit that digitally corrects the pre-connection digital values output from the analog-to-digital converter unit. The corrector unit includes a weighting coefficient multiplier unit that outputs a post-correction digital value obtained by multiplying the weighting coefficients provided for each bit by each bit of the pre-correction digital value output from the A/D converter unit and summing them, and a weighting coefficient search unit that searches for weighting coefficients so as to minimize an error signal generated based on the post-correction digital value and an approximate value for the post-correction digital value.
Abstract:
An analog to digital conversion device has a plurality of, two, for example, analog to digital converters, and a reference charge quantity interchange section arranged and configured to interchange, among the plurality of analog to digital converters, reference quantities of electric charge (e.g., reference currents or reference capacitances) to be used therein during an analog to digital conversion period.
Abstract:
A method of implementing Correlated Multi-Sampling (CMS) in an image sensor with improved analog-to-digital converter (ADC) linearity starts with an ADC circuitry included in a readout circuitry that generates a plurality of uncorrelated random numbers used as a plurality of ADC pedestals for sampling image data. A Successive Approximation Register (SAR) included in the ADC circuitry stores a different one of the ADC pedestals before each sampling of the image data. The ADC circuitry samples an image data from a row a plurality of times against plurality of ADC pedestals to obtain a plurality of sampled input data. The ADC circuitry converts each of the plurality of sampled input data from analog to digital, which includes performing a binary search using the SAR. Other embodiments are also described.
Abstract:
A method for producing sampled data, which as the requested sampling period is increased, each sample is the average of an increasing number of ADC samples such that a maximum number of ADC samples are evenly space across the sample period. The method can include choosing one of multiple ADC with varying speed versus resolution capabilities to further increase the quality of the sampled data as the sampling period increases.