Abstract:
A system for laser ophthalmic surgery includes: a single laser source, under the operative control of a controller, configured to alternatively deliver a first treatment laser beam and a second treatment laser beam. The first treatment laser beam has a pulse energy of 10 to 500 μJ. The second pulsed laser beam has a second pulse energy of about 0.1 to 10 μJ, lower than the first treatment laser beam. An optical system focuses the first treatment laser beam to a first focal spot and directs the first focal spot in a first treatment pattern into a first intraocular target. The optical system also focuses the second treatment laser beam to a second focal spot and direct the second focal spot in a second treatment pattern into a second intraocular target. The first intraocular target and second intraocular target are different.
Abstract:
A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
Abstract:
A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
Abstract:
Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
Abstract:
A laser eye surgery system used to treat vitreous bodies includes a laser source, a ranging subsystem, an integrated optical subsystem, and a patient interface assembly. The laser source produces a treatment beam that includes a plurality of laser pulses. The ranging subsystem produces a source beam used to locate one or more structures of an eye. In some embodiments, the ranging subsystem includes an optical coherence tomography (OCT) pickoff assembly that includes a first optical wedge and a second optical wedge separated from the first optical wedge. The OCT pickoff assembly is configured to divide an OCT source beam into a sample beam and a reference beam. The integrated optical subsystem is used to scan the treatment beam and the sample beam. In other embodiments, Purkinje imaging, Scheimpflug imaging, confocal or nonlinear optical microscopy, ultrasound, stereo imaging, fluorescence imaging, or other medical imaging technique may be used.
Abstract:
Systems and methods here may be used to support a laser eye surgery device, including a base assembly mounted to an optical scanning assembly via, a horizontal x axis bearing, a horizontal y axis bearing, and a vertical z axis bearing, mounted on the base assembly, configured to limit movement of the optical scanning assembly in an x axis, y axis and z axis respectively, relative to the base assembly, a vertical z axis spring, configured to counteract the forces of gravity on the optical scanning assembly in the z axis, and, mirrors mounted on the base assembly and positioned to reflect an energy beam into the optical scanning assembly no matter where the optical scanning assembly is located on the x axis bearing, the y axis bearing and the z axis bearing.
Abstract:
Configurations are described for conducting ophthalmic procedures to address cataract-related clinical challenges. In one embodiment, a one-piece patient contact interface may be utilized to couple a diagnostic and/or interventional system to a cornea of a patient; in another embodiment, a two-part configuration may be utilized; in another embodiment, a liquid interface two-part embodiment may be utilized.
Abstract:
Systems and methods are described for cataract intervention. In one embodiment a system comprises a laser source configured to produce a treatment beam comprising a plurality of laser pulses; an integrated optical system comprising an imaging assembly operatively coupled to a treatment laser delivery assembly such that they share at least one common optical element, the integrated optical system being configured to acquire image information pertinent to one or more targeted tissue structures and direct the treatment beam in a 3-dimensional pattern to cause breakdown in at least one of the targeted tissue structures; and a controller operatively coupled to the laser source and integrated optical system, and configured to adjust the laser beam and treatment pattern based upon the image information, and distinguish two or more anatomical structures of the eye based at least in part upon a robust least squares fit analysis of the image information.