Abstract:
A hearing aid device (2) is disclosed. The hearing aid device (2) is configured to be sealingly inserted into the bony region (20) of the ear canal (16). The hearing aid device (2) comprises a receiver (12) and at least one microphone (4, 6) and means for processing sound signals detected by the at least one microphone (4, 6). The hearing aid device (2) comprises means for carrying out electronic feedback suppression by applying a frequency shift (ΔF) and/or a time delay to the detected sound signals. A method for providing electronic feedback reduction in a hearing aid device (2) is also disclosed.
Abstract:
The invention relates to a hearing aid a cochlear implant comprising a) at least one input transducer for capturing incoming sound and for generating electric audio signals which represent frequency bands of the incoming sound, b) a sound processor which is configured to analyze and to process the electric audio signals, c) a transmitter that sends the processed electric audio signals, d) a receiver/stimulator, which receives the processed electric audio signals from the transmitter and converts the processed electric audio signals into electric pulses, e) an electrode array embedded in the cochlear comprising a number of electrodes for stimulating the cochlear nerve with said electric pulses, and f) a control unit configured to control the distribution of said electric pulses to the number of said electrodes. The control unit is configured to distribute said electric pulses to the number of said electrodes by applying one out of a plurality of different coding schemes, and wherein the applied coding scheme is selected according to characteristics of the incoming sound.
Abstract:
A hearing device with an adjustable vent is disclosed. The device includes at least one microphone configured to provide an input signal representing sound, a processor configured to process the input signal and provide a processed signal, at least one loudspeaker configured to receive the processed signal from the processor and to provide an acoustic signal based on the processed signal to the ear of a user, an earpiece comprising a vent, and an electrically controllable valve configured to control the vent, and a valve control unit configured to receive one or more control signals in dependence of a current hearing situation of the hearing device, wherein the valve control unit is configured to adjust the electrically controllable valve in dependence of the one or more control signals to provide the vent to be in a state between an acoustically more open and an acoustically less open state.
Abstract:
A hearing device comprising a first and a second input sound transducers, a processing unit, and an output sound transducer. The first transducer is configured to be arranged in an ear canal or in the ear of the user, to receive acoustical sound signals from the environment and to generate first electrical acoustic signals from the received acoustical sound signals. The second transducer is configured to be arranged behind a pinna or on, behind or at the ear of the user, to receive acoustical sound signals from the environment and to generate second electrical acoustic signals from the received acoustical sound signals. The processing unit is configured to process the first and second electrical acoustic signals and apply a direction dependent gain. The output sound transducer is configured generate acoustical output sound signals in accordance with the applied direction dependent gain.
Abstract:
A hearing device configured to be worn in an ear canal, wherein the hearing device comprises a housing, a receiver, one or more microphones and a battery. The receiver is arranged in the housing in a manner in which the receiver at least partly extends outside of the housing, and a sealing element is configured to be arranged in the bony region of the ear canal.
Abstract:
The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.
Abstract:
A hearing aid device that is configured to be inserted into the bony region of an ear canal includes a receiver, a microphone, a processor for processing sound signals detected by the microphone, and a feedback suppressor for carrying out electronic feedback suppression by applying at least one of a frequency shift and a time delay to the sound signals detected by the microphone. The hearing aid device may be configured to carry out the electronic feedback suppression including at least one of the frequency shift and the time delay as function of the frequency of the detected sound signals.
Abstract:
A hearing aid device configured to be inserted into the ear canal of a hearing aid user. The hearing aid includes a receiver, a hearing instrument body, and a connection member extending between the hearing instrument body and the receiver. The connection member is a permanent part of the hearing aid device and the connection member has a stiffness that allows the receiver to be inserted into the ear canal by moving the hearing instrument body towards the eardrum. The connection member achieves a first stiffness sufficiently large to insert the hearing aid device into the ear canal and achieves a second significantly reduced stiffness which makes the hearing aid device comfortable to wear for the user.
Abstract:
The application relates to a hearing assistance device (HAD) comprising (a) an input transducer system comprising (a1) an audio input transducer (AIT), and (a2) a first supplementary input transducer (SIT1), (b) an output transducer (OT) for converting a processed output signal to a stimulus perceivable by said user as sound, and (c) a signal processing unit (SPU) operationally connected to said audio input transducer (AIT), to said first supplementary input transducer (SIT1), and to said output transducer (OT), said signal processing unit (SPU) being configured for processing said electric audio input signal, and said first supplementary electric input signal, and for providing said processed output signal. The audio input transducer (AIT) is adapted for being located in an ear of the user. In a NORMAL mode of operation, electric audio input signal is processed in the signal processing unit and the supplementary electric input signal(s) are used to control the processing.
Abstract:
A hearing aid is disclosed. The hearing aid comprises a microphone adapted to receive sound signals, an amplifier configured to amplify signals received by the microphone and output means (e.g. a receiver). The hearing aid is configured to detect if speech is received by the microphone and the hearing aid is configured to provide amplification of the detected sound signals according to a non-speech mode when no speech is detected. The hearing aid is configured to provide amplification of the detected sound signals according to a speech mode when speech is detected. The amplification carried out according to the non-speech mode is different from the amplification carried out according to the speech mode. The invention also discloses a method for amplifying sound signals received by a microphone in a hearing aid.