Abstract:
A method for cooling and warming: a refrigerant circuit (2) with at least a compressor (5), a liquid-cooled condenser (6), a liquid-heated evaporator (7) and two outer secondary liquid-based circuits (3,4). The first of those circuits includes (3) an element (13) situated in the space which is to be cooled or warmed, and which is operative for that purpose. The second circuit (4) includes a radiator operation to cool the liquid in the circuit. The two secondary circuits (3,4) are united, during heat pump operation, to form a common single circuit so that the condenser (6) heats liquid which is supplied to the element (13), with the result that the element (13) releases heat instead of cold, without the flows in the primary refrigerant circuit (2), in the element circuit (3) or in the radiator circuit (4) being alternated/reversed. A valve controlled bypass bypasses the radiator in that circuit.
Abstract:
The invention relates to a valve with high flow resolution within a flow range, which valve comprises a valve housing and a valve plug, whereby the valve plug comprises a cavity and a flow regulating slit which in cooperation with the valve housing forms a flow passage. On the shell surface of the valve plug, when the valve is in a fully open position, there is an area which, relative to the outlet of the valve housing, is situated on the other side of the axis of rotation of the valve plug, which area is free from the cavity. The intersection of the cavity with the shell surface of the valve plug is preferably situated on the one side of the axis of rotation of the valve plug so that the valve plug exhibits a continuous shell surface free from the cavity along at least 180 degrees of the circumference of the valve plug, whereby the flow regulating slit may extend over a substantial portion of the circumference of the valve plug, thereby providing good flow resolution in the flow range in which the flow enters the cavity via the flow regulating slit only.
Abstract:
The invention relates to a valve with high flow resolution within a flow range, which valve comprises a valve housing and a valve plug, whereby the valve plug comprises a cavity and a flow regulating slit which in cooperation with the valve housing forms a flow passage. On the shell surface of the valve plug, when the valve is in a fully open position, there is an area which, relative to the outlet of the valve housing, is situated on the other side of the axis of rotation of the valve plug, which area is free from the cavity. The intersection of the cavity with the shell surface of the valve plug is preferably situated on the one side of the axis of rotation of the valve plug so that the valve plug exhibits a continuous shell surface free from the cavity along at least 180 degrees of the circumference of the valve plug, whereby the flow regulating slit may extend over a substantial portion of the circumference of the valve plug, thereby providing good flow resolution in the flow range in which the flow enters the cavity via the flow regulating slit only.
Abstract:
An arrangement for maintaining an operating temperature of a battery (8) in a vehicle (1). A cooling system (12) with a circulating coolant. A radiator (14) to cool the coolant includes a heat-transfer region (12a) where the coolant is in contact with the battery (8). An AC installation with a circulating refrigerant includes a first circuit with a first evaporator (21) in which a refrigerant cools air in a driving cab space (2) of the vehicle (1), and a first condenser (17) where the refrigerant releases thermal energy; a second circuit with a second evaporator where the refrigerant cools the coolant in the cooling system (12), and a second condenser (24) where the refrigerant warms the coolant in the cooling system (12).
Abstract:
An arrangement for converting thermal energy to mechanical energy in a vehicle (1). A working medium is vaporised by a heat source (3) in the vehicle (1) and is thereafter expanded through a turbine (13) generating mechanical energy. A control unit (31) receives information indicating the vehicle (1) is to be braked and connects the cooling system (21, 39) of the vehicle to the vehicle's power train (2, 5-9) to cool a refrigerant to a low temperature. The control unit (31) receives information that the vehicle (1) requires extra propulsive force and, uses the cooled refrigerant to subject the working medium in the line circuit (10) to a second step of cooling before it is led to the evaporator (12). The condensation temperature of the working medium may thus be lowered and more mechanical energy may be generated in the turbine (13).
Abstract:
An arrangement and a method for converting thermal energy to mechanical energy. The arrangement has a line circuit (3), circulation device (4) for circulating a zeotropic refrigerant mixture in the line circuit (3), an evaporator (6) in which the refrigerant mixture is vaporised by a heat source (7), a turbine (9) driven by the vaporised refrigerant mixture, and a condenser (12) which cools the refrigerant mixture so that it condenses. A control unit assesses whether the refrigerant mixture does not become fully vaporised in the evaporator (6) and, leads incompletely vaporised refrigerant mixture leaving the evaporator to a separating device (14) in which a liquid portion of the refrigerant mixture is separated from the gaseous portion, after which only the gaseous portion proceeds towards the turbine (9).