Abstract:
A method for processing an audio signal (i(t)), comprises: receiving a first set (x(t)) of time-varying signals representing a first sound comprised in the audio signal (i(t)), the first set (x(t)) of time-varying signals comprising an amplitude modulation signal (a(t)), a carrier frequency signal (fc(t)), a pitch signal (f0(t)) and an FM index signal (h(t)); and modifying the first set (x(t)) of time-varying signals by modifying the amplitude of the FM index signal (h(t)), thereby providing a first modified set (x′(t)) of time-varying signals. The resulting first modified set (x′(t)) of time-varying signals may subsequently be modulated to provide an audio output signal.
Abstract:
A hearing device has a housing and a first electrode arranged to abut the skin of the individual. The hearing device further comprises at least two different elements selected from the group comprising: a brain-wave measurement circuit receiving measurement signals from the first electrode and from a second electrode arranged to abut the skin of the individual; a communication circuit receiving communication signals from and/or transmitting communication signals to the first electrode; a touch-sensing circuit transmitting sensing signals to the first electrode; a thermoelectric generator thermally connected to the outer surface of the housing mainly through the first electrode; and a charge control circuit sinking a charging current in dependence on a voltage across the first electrode and a third electrode.
Abstract:
A method of personalizing one or more parameters of a processing algorithm for use in a hearing aid of a specific user comprises Performing a predictive test for estimating a hearing ability of the user when listening to signals having different characteristics; Analyzing results of said predictive test for said user and providing a hearing ability measure for said user; Selecting a specific processing algorithm of said hearing aid, Selecting a cost-benefit function related to said user's hearing ability in dependence of said different characteristics for said algorithm; and Determining, for said user, one or more personalized parameters of said processing algorithm in dependence of said hearing ability measure and said cost-benefit function.
Abstract:
A hearing assistance system comprises an input unit for providing electric input sound signals ui, each representing sound signals Ui from a multitude nu of sound sources Si, an electroencephalography (EEG) system for recording activity of the auditory system of the user's brain and providing a multitude ny of EEG signals yj, and a source selection processing unit receiving said electric input sound signals ui and said EEG signals yj, and in dependence thereof configured to provide a source selection signal Ŝx indicative of the sound source Sx that the user currently pays attention to using a selective algorithm that determines a sparse model to select the most relevant EEG electrodes and time intervals based on minimizing a cost function measuring the correlation between the individual sound sources and the EEG signals, and to determine the source selection signal Ŝx based on the cost functions obtained for said multitude of sound sources.
Abstract:
The application relates to a hearing device, e.g. a hearing aid, comprising a sensor part adapted for being located at or in an ear or for fully or partially for being implanted in the head of a user. The application further relates to a hearing system. The object of the present application is to provide an improved hearing device. The problem is solved in that the sensor part comprises an electrical potential sensor for sensing an electrical potential, and the hearing device further comprises electronic circuitry coupled to the electrical potential sensor to provide an amplified output. The invention may e.g. be used in binaural hearing aid systems to control the processing, e.g. using EarEOG.
Abstract:
The present invention regards an in-ear stimulation device comprising at least one in-ear sensor, a control unit, and an output transducer. The in-ear stimulation device is configured to be worn at or on an ear of a human user and at least partly in an ear canal of the user. The at least one in-ear sensor is arranged and configured to measure electrical activity signals indicative of an electroencephalogram (EEG) of a user wearing the device. The control unit is configured to receive the electrical activity signals and to detect a presence of a slow oscillation, which is in a frequency range between 0.5 Hz and 1 Hz, in the electrical activity signals. The control unit is further configured to trigger, in response to detecting the presence of a slow oscillation, a generation of at least one stimulus impulse. The output transducer is configured to receive the at least one stimulus impulse and to generate a corresponding output sound.
Abstract:
The present disclosure relates to communication devices. Such devices may comprise input for receiving sound signal to be processed and presented to a user, and output for outputting the processed signal to a user perceivable as sound. Such processing may be performed by use of a processor for processing the sound signal in dependence of a setting or a set of setting to compensate a hearing loss profile. Further, the communication device may comprise a bio-signal acquisition and amplifier component in communication with a user interface for providing the bio-signals as input to the user interface, the user interface controlling the setting or set of setting for operation of the communication device.
Abstract:
A listening device processes an electric input sound signal and provides an output stimulus perceivable to a wearer of the listening device as sound, the listening device comprising a signal processing unit for processing an information signal originating from the electric input sound signal and to provide a processed output signal forming the basis for generating said output stimulus. A perception unit establishes a perception measure indicative of the wearer's present ability to perceive said information signal. A signal interface communicates the perception measure to another person or device.
Abstract:
A hearing device is adapted to be arranged on or at least partly implanted in an individual's head and comprises: an input unit providing an input audio signal; a signal processing circuit adapted to process the input audio signal; an output unit adapted to provide an audible signal to the individual; one or more electrodes adapted to detect electric brain potentials of the individual; and a brainwave measurement circuit adapted to determine one or more EEG signals from electric signals received from the one or more electrodes. The hearing device further comprises: a first spectrum analyser determining first audio spectra; a reconstructor adapted to repeatedly reconstruct second audio spectra; a first correlator to determine coherence between the first and the second audio spectra; and a control unit adapted to alter said processing in dependence on the coherence.
Abstract:
The present application relates to a hearing aid adapted to be worn in or at an ear of a hearing aid user and/or to be fully or partially implanted in the head of the hearing aid user. The hearing aid may comprise an input unit for receiving an input sound signal from an environment of a hearing aid user and providing at least one electric input signal representing said input sound signal, an output unit for providing at least one set of stimuli perceivable as sound to the hearing aid user based on processed versions of said at least one electric input signal, a voice activity detector (VAD) configured to determine speech in the input sound signal, an own voice detector (OVD) configured to determine own voice of the hearing aid user in the input sound signal, a processing unit connected to said input unit and to said output unit and comprising signal processing parameters of the hearing aid to provide processed versions of said at least one electric input signal, a turn-taking determining unit configured to determine turn-taking behaviour of the hearing aid user, wherein the processing unit is configured to adjust said signal processing parameters based on the determined turn-taking behavior of the hearing aid user.