Abstract:
A substrate at least partially coated with an anti-fingerprint coating is prepared from a coating composition that includes: (a) an organic solvent; and (b) an alkoxysilane functional polymer having at least one ester linkage, at least one urethane linkage, and at least one alkoxysilane functional group. Further, the polymer is prepared from components including: (i) an active hydrogen functional compound having a hydroxyl group, amino group, thiol group, or a combination thereof; (ii) an intramolecular cyclic ester; and (iii) an isocyanate functional compound. The active hydrogen functional compound (i), the isocyanate functional compound (iii), or both (i) and (iii) have one or more alkoxysilane functional groups. Alkoxysilane functional polymers and coating compositions containing the same are also included.
Abstract:
A fluoropolymer having fluoropolyether linkages, at least two ester linkages, and hydrolyzable functional groups is represented by chemical structure (I): With respect to chemical structure (I), m is a number from 1 to 4 and n is a number from 10 to 60, each R1 is independently fluorine or CF3, R2 is an alkylene group, R3 is an alkylene group in which one or more hydrogens of the alkylene group are optionally substituted with fluorine, R4 is an alkyl group in which one or more hydrogens of the alkyl group are substituted with fluorine, R5 is an alkylene group in which at least one hydrogen of the alkylene group is substituted with a group comprising CF3, CF2H, or a hydrolyzable silyl group, and Z is a group represented by chemical structure (II), Methods of preparing the fluoropolymer and coating compositions containing the fluoropolymer are also included.
Abstract:
A silicon thin film solar cell includes a substrate and an undercoating formed over the substrate. The undercoating includes first layer of tin oxide or titania and a second layer having a mixture of oxides of at least two of Sn, P, Si, Ti, Al, and Zr. A conductive coating is over the first coating. The conductive coating includes oxides of one or more of Zn, Fe, Mn, Al, Ce, Sn, Sb, Hf, Zr, Ni, Zn, Bi, Ti, Co, Cr, Si, or In or an alloy of two or more of these materials. A coated article has a substrate and an anti-iridescent layer formed over the substrate. The anti-iridescent layer has a metal oxide film and a homogeneous mixed oxide film. A functional film is over the anti-iridescent layer.
Abstract:
The present invention is directed toward a polymer and a method for making a polymer that has nanostructures incorporated into the matrix of the polymer. The method of the invention involves the following steps; mixing a precursor solution for the polymer with a precursor for the nanostructures to form a mixture; forming nanostructures in the mixture from the precursor of the nanostructures; and forming a polymer from the precursor solution of the polymer so that the nanostructures are incorporated into the polymer matrix.
Abstract:
A solar cell includes a first substrate having a first surface and a second surface. A haze coating is provided over at least a portion of the first surface, the haze coating comprising an oxide coating incorporating nanoparticles. A first conductive layer is provided over at least a portion of the second surface. A semiconductor layer is provided over the first conductive layer. A second conductive layer is provided over at least a portion of the semiconductor layer.
Abstract:
A silicon thin film solar cell includes a substrate and an undercoating formed over the substrate. The undercoating includes first layer of tin oxide or titania and a second layer having a mixture of oxides of at least two of Sn, P, Si, Ti, Al, and Zr. A conductive coating is over the first coating. The conductive coating includes oxides of one or more of Zn, Fe, Mn, Al, Ce, Sn, Sb, Hf, Zr, Ni, Zn, Bi, Ti, Co, Cr, Si, or In or an alloy of two or more of these materials. A coated article has a substrate and an anti-iridescent layer formed over the substrate. The anti-iridescent layer has a metal oxide film and a homogeneous mixed oxide film. A functional film is over the anti-iridescent layer.
Abstract:
The present invention is directed to an article comprising an optical cover assembly. The optical cover assembly comprises: (A) a substrate comprising an outer surface and an opposing inner surface; (B) an optional first coating layer applied directly to at least the outer surface of the substrate; (C) an anti-reflective coating stack comprising at least one coating layer; and (D) a topmost coating layer comprising a fluorosilane polymer on the outer surface of the substrate. The optical cover assembly demonstrates hydrophobicity and extended UV durability, and serves as a component of at least one of a vehicle, a light sensor, a LiDAR detector, a motion sensor, a vision camera, a backup camera, a security camera, an IR camera, a headlight, a taillight, a signal light, a RADAR emitter, a RADAR detector, an aircraft landing light, and a gas detector.
Abstract:
A substrate at least partially coated with an anti-fingerprint coating is prepared from a coating composition that includes: (a) an organic solvent; and (b) an alkoxysilane functional polymer having at least one ester linkage, at least one urethane linkage, and at least one alkoxysilane functional group. Further, the polymer is prepared from components including: (i) an active hydrogen functional compound having a hydroxyl group, amino group, thiol group, or a combination thereof; (ii) an intramolecular cyclic ester; and (iii) an isocyanate functional compound. The active hydrogen functional compound (i), the isocyanate functional compound (iii), or both (i) and (iii) have one or more alkoxysilane functional groups. Alkoxysilane functional polymers and coating compositions containing the same are also included.
Abstract:
A method of forming an anti-glare coating on a substrate is provided. The method comprises: (a) heating the substrate to a temperature of at least 100° F. (37.8° C.) to form a heated substrate; (b) applying a curable film-forming sol-gel composition on at least one surface of the heated substrate, to form a coated substrate with a sol-gel network layer having a surface roughness; and (c) subjecting the coated substrate to conditions for a time sufficient to effect cure of the sol-gel layer and form an anti-glare, coated article. The sol-gel network layer is essentially free of inorganic oxide particles and comprises: (i) a tetraalkoxysilane; (ii) an epoxy functional trialkoxysilane; (iii) a metal-containing catalyst; and (iv) a solvent component. Coated articles prepared by the method above and demonstrating anti-glare properties are also provided.
Abstract:
The present invention is directed toward a polymer and a method for making a polymer that has nanostructures incorporated into the matrix of the polymer. The method of the invention involves the following steps: mixing a precursor solution for the polymer with a precursor for the nanostructures to form a mixture; forming nanostructures in the mixture from the precursor of the nanostructures; and forming a polymer from the precursor solution of the polymer so that the nanostructures are incorporated into the polymer matrix.