Abstract:
There is provided a selective laser sintering method capable of reducing the trouble in chipping or breakage of the machining tool and the like. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by repetition of a powder-layer forming and a solidified-layer forming, the repetition including the steps of (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof, and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam.
Abstract:
There is provided a manufacturing method of the three-dimensional shaped object, the method being capable of suitably reducing the local raised portion which can occur during the light beam irradiation under the condition of the divided sub-irradiation paths. The manufacturing method of the present invention is performed by repetition of a powder-layer forming and a solidified-layer forming, wherein an irradiation path of the light beam is divided into a plurality of sub-irradiation paths including a short sub-irradiation path with its length being shorter than a predetermined length and a long sub-irradiation path with its length being the predetermined length or longer, and wherein an irradiation mode of the light beam is changed depending on the lengths of the sub-irradiation paths.
Abstract:
There is provided a more efficient method for manufacturing a three-dimensional shaped object. The method of the present invention comprises a successive formation of a plurality of solidified layers through a light beam irradiation, wherein the solidified layers are provided by a hybrid of combined systems of an after irradiation system and a simultaneous irradiation system, the after irradiation system being such that the light beam irradiation is performed after a formation of a powder layer, the simultaneous irradiation system being such that the light beam irradiation is performed while a raw material is supplied.
Abstract:
In order to provide a sprue-bush which is capable of suitably cooling a melt raw resin in a raw resin-flow path as a whole, there is provided a sprue-bush, comprising a raw resin-flow path and a cooling medium-flow path located around the raw resin-flow path, wherein a width dimension of the raw-resin flow path gradually becomes larger toward a downstream side-end surface of the sprue-bush, and wherein the downstream side-end surface of the sprue-bush is a heat transfer surface.
Abstract:
There is provided a manufacturing method of a three-dimensional shaped object, the method being capable of reducing a warp deformation of the three-dimensional shaped object. The manufacturing method according to an embodiment of the present invention produces a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming on a base plate, wherein the forming of at least one prior solidified layer is performed under a higher temperature condition than that for the forming of a subsequent solidified layer, the at least one prior solidified layer being formed prior to the subsequent solidified layer.
Abstract:
There is provided a manufacturing method of a three-dimensional shaped object, the method being capable of reducing a warp deformation of the three-dimensional shaped object. The manufacturing method according to an embodiment of the present invention produces a three-dimensional shaped object by alternate repetition of a powder-layer forming and a solidified-layer forming by light beam irradiation, wherein as a platform for the three-dimensional shaped object, a plate laminate body comprising a dummy solidified layer and a base plate for the shaped object is used, and the dummy solidified layer is formed on one of principal surfaces of the base plate, whereas the three-dimensional shaped object is manufactured on the other of the principal surfaces of the base plate.
Abstract:
An apparatus for producing a laminated object, includes a powder layer forming unit for forming a powder layer of a powdery material, a material supply unit for feeding the powdery material to the powder layer forming unit; and a solidified layer forming unit for forming a solidified layer by irradiating a light beam on a specified portion of the powder layer and sintering or melting the specified portion of the powder layer. The apparatus is configured to produce an integrally laminated three-dimensional object by repeating formation of the powder layer and formation of the solidified layer. The material supply unit includes a cartridge unit charged with the powdery material, the cartridge unit being configured to allow the powdery material to drop downwards.