Abstract:
An electric component comprising an assembly of two PIN diodes in series formed in a semiconductor substrate layer separated from a support layer by an insulating layer, the doped areas forming the electrodes of each diode having a depth equal to that of the substrate layer, the component including a first area of a first doping type surrounded with a second intrinsic area, itself surrounded with a third area of a second doping type, the third area being surrounded with a fourth area of the first doping type, the fourth area being surrounded with a fifth intrinsic area, itself surrounded with a sixth area of the second doping type, the third and fourth areas being covered and connected by a metal area, each of the first and sixth areas being connected to a contact pad on which rests a welding ball.
Abstract:
A non-directional coupler including a semiconductor junction in series with a capacitor, the semiconductor junction being formed so that the threshold frequency short of which it behaves as a rectifier is smaller than the coupler's operating frequency.
Abstract:
A variable capacitance formed in a semiconductor substrate with a ribbed surface, having a first electrode formed of all the ribs protruding from the substrate, of portions of the substrate underlying the ribs, and of at least portions of the substrate separating the bases of two ribs, having a second electrode superposed to at least one portion of the first electrode. The ribs are irregular in terms of cross-section and/or planar base surface area.
Abstract:
A method for forming narrow trenches in a silicon substrate, comprising the steps of: etching the substrate to form first trenches separated by first silicon ribs; performing a thermal oxidation of the substrate to form a silicon oxide layer around the substrate, to obtain second trenches and second silicon ribs; filling the second trenches with fingers of an etchable material; etching the oxide down to the upper surface of the second ribs while keeping oxide portions between said material fingers and the second ribs; etching away the second silicon ribs and said material fingers; etching the oxide to expose the substrate at the bottom of the oxide portions, while keeping oxide fingers; and etching the substrate between the oxide fingers to form narrow trenches in the substrate.
Abstract:
A non-directional coupler including a semiconductor junction in series with a capacitor, the semiconductor junction being formed so that the threshold frequency short of which it behaves as a rectifier is smaller than the coupler's operating frequency.
Abstract:
A vertical diode of low capacitance formed in a front surface of a semiconductor substrate, including a first area protruding from the substrate surface including at least one doped semiconductor layer of a conductivity type opposite to that of the substrate, the upper surface of the semiconductor layer supporting a first welding ball. The diode includes a second area including on the substrate a thick conductive track supporting at least two second welding balls, said first and second welding balls defining a plane parallel to the substrate plane.
Abstract:
A non-directional coupler including a semiconductor junction in series with a capacitor, the semiconductor junction being formed so that the threshold frequency short of which it behaves as a rectifier is smaller than the coupler's operating frequency.
Abstract:
An antenna switch module between several radio-frequency transmit and/or receive paths including, between a common terminal on the antenna side and an access capacitor specific to each path, at least one diode, the number of diodes directly connected to the common terminal being odd and the number of diodes having their cathode on the common terminal side being equal, with a difference of one, to the number of diodes having their anode on the common terminal side.
Abstract:
A method for forming a component of TMBS type having its periphery formed of a trench with insulated walls filled with a conductor, including the steps of depositing on a semiconductor substrate a thick layer of a first insulating material and a thin layer of a second material; simultaneously digging a peripheral trench and the trenches of the component; isotropically etching the first material so that a cap overhanging a recess remains; forming a thin insulating layer; and filling the trenches and said recess with a conductive material.