Abstract:
A method for forming a component of TMBS type having its periphery formed of a trench with insulated walls filled with a conductor, including the steps of depositing on a semiconductor substrate a thick layer of a first insulating material and a thin layer of a second material; simultaneously digging a peripheral trench and the trenches of the component; isotropically etching the first material so that a cap overhanging a recess remains; forming a thin insulating layer; and filling the trenches and said recess with a conductive material.
Abstract:
A method for forming a component of TMBS type having its periphery formed of a trench with insulated walls filled with a conductor, including the steps of depositing on a semiconductor substrate a thick layer of a first insulating material and a thin layer of a second material; simultaneously digging a peripheral trench and the trenches of the component; isotropically etching the first material so that a cap overhanging a recess remains; forming a thin insulating layer; and filling the trenches and said recess with a conductive material.
Abstract:
The invention concerns a low-capacity vertical diode designed to be mounted by a front surface made in a semiconductor substrate (1), comprising a first zone projecting relative to the surface of the substrate including at least a semiconductor layer (3) doped with a type of conductivity opposite to that of the substrate, the upper surface of the semiconductor layer bearing a first solder bump (23). The diode comprises a second zone including on the substrate a thick strip conductor (16) bearing at least second solder bumps (24), said first and second solder bumps defining a plane parallel to the substrate plane.
Abstract:
An antenna switch module between several radio-frequency transmit and/or receive paths including, between a common terminal on the antenna side and an access capacitor specific to each path, at least one diode, the number of diodes directly connected to the common terminal being odd and the number of diodes having their cathode on the common terminal side being equal, with a difference of one, to the number of diodes having their anode on the common terminal side.
Abstract:
The present invention relates to a thermally-controlled actuator device of the type comprising a body, a part held stationary relative to the body by a low-melting point connection material, e.g. brazing or equivalent means, and a mass of exothermic material suitable for acting on command to give off intense heat energy suitable for melting the connection material so as to release the part relative to the body, wherein the exothermic material is housed in a chamber that is subdivided into a plurality of compartments suitable for confining said material in close thermal contact with the wall of the chamber.
Abstract:
A vertical diode of low capacitance formed in a front surface of a semiconductor substrate, including a first area protruding from the substrate surface including at least one doped semiconductor layer of a conductivity type opposite to that of the substrate, the upper surface of the semiconductor layer supporting a first welding ball. The diode includes a second area including on the substrate a thick conductive track supporting at least two second welding balls, said first and second welding balls defining a plane parallel to the substrate plane.
Abstract:
A non-directional coupler including a semiconductor junction in series with a capacitor, the semiconductor junction being formed so that the threshold frequency short of which it behaves as a rectifier is smaller than the coupler's operating frequency.
Abstract:
A structure including at least two neighboring components, capable of operating at high frequencies, formed in a thin silicon substrate extending on a silicon support and separated therefrom by an insulating layer, the components being laterally separated by insulating regions. The silicon support has, at least in the vicinity of its portion in contact with the insulating layer, a resistivity greater than or equal to 1,000 ohms.cm.
Abstract:
A structure including at least one electronic component formed in a semiconductor stack comprising a heavily-doped buried silicon layer of a first conductivity type extending on a lightly-doped silicon substrate of a second conductivity type and a vertical insulating trench surrounding the component. The trench penetrates, into the silicon substrate, under the silicon layer, down to a depth greater than the thickness of the space charge region in the silicon substrate.
Abstract:
A structure including at least two neighboring components, capable of operating at high frequencies, formed in a thin silicon substrate extending on a silicon support and separated therefrom by an insulating layer, the components being laterally separated by insulating regions. The silicon support has, at least in the vicinity of its portion in contact with the insulating layer, a resistivity greater than or equal to 1,000 ohms.cm.