摘要:
Process for refining hydrocarbon feedstocks comprising contacting a hydrocarbon feedstock with zeolite-containing particles that are free-flowing, discrete, rounded, rigid, frangible, hollow, and opaque. The zeolite-containing particles are essentially completely de-coked upon regeneration, and then retain their catalytic activity even after several cycles of use-regeneration.
摘要:
This invention relates to novel liquid membrane formulations which are water-in-oil emulsions wherein the oil phase comprises a sulfonated polymer having a backbone which is substantially nonaromatic, for example, less than 10 mole % aromatic, and uses thereof in high temperature liquid membrane processes. The emulsions are useful in liquid membrane water treating processes, especially in water treating processes which are desirably run at high temperatures. In the most preferred embodiment, these compositions are used in a liquid membrane sour water treating process wherein a waste water stream containing ammonium sulfide is contacted with a liquid membrane emulsion, i.e., the emulsions of the instant invention, at conditions whereby ammonia permeates through the external phase of the emulsion into an acidic internal phase wherein it is converted to a nonpermeable form, e.g., ammonium ion, while H.sub.2 S is continuously stripped out of the waste water solution by means of an inert gas, e.g., steam. Processes of this sort are most effectively carried out at temperatures greater than 80.degree.C. wherein the emulsions of the instant invention have excellent stability.
摘要:
This invention relates to novel liquid membrane formulations which are water-in-oil emulsions wherein the oil phase comprises a sulfonated polymer having a backbone which is substantially nonaromatic, for example, less than 10 mole % aromatic, and uses thereof in high temperature liquid membrane processes. The emulsions are useful in liquid membrane water treating processes, especially in water treating processes which are desirably run at high temperatures. In the most preferred embodiment, these compositions are used in a liquid membrane sour water treating process wherein a waste water stream containing ammonium sulfide is contacted with a liquid membrane emulsion, i.e. the emulsions of the instant invention, at conditions whereby ammonia permeates through the external phase of the emulsion into an acidic internal phase wherein it is converted to a nonpermeable form, e.g. ammonium ion, while H.sub.2 S is continuously stripped out of the waste water solution by means of an inert gas, e.g. steam. Processes of this sort are most effectivey carried out at temperatures greater than 80.degree. C. wherein the emulsions of the instant invention have excellent stability.
摘要:
The instant invention relates to novel liquid membrane formulations, i.e., emulsions, which comprise an aqueous interior phase and a water-immiscible exterior phase; said water-immiscible exterior phase comprising an ethylene vinyl acetate copolymer and a solvent for this polymer. These compositions may additionally contain a water insoluble surfactant to stabilize the emulsions. In the most preferred embodiment, the aqueous interior phase comprises a strong acid, for example from about 1 to 10 percent by weight sulfuric acid. These emulsions are useful in liquid membrane processes for the separation of dissolved components from aqueous solution. Emulsions of the instant invention are characterized as showing very low swelling when contacted with aqueous solutions, especially at higher temperatures and thus are especially effective for use in the treatment of sour water feed streams by the liquid membrane technique.
摘要:
A method for cleaning a vapor reactor by applying a liquid cleaning agent comprising a fluorinated ketone having about 5 to about 10 carbon atoms and up to two hydrogen atoms is described. The fluorinated ketone has low global warming potential.
摘要:
Novel zeolite-containing particles. The particles are free-flowing, discrete, rounded, rigid, frangible, hollow, and opaque. The shell or wall of each particle is porous to gases and fluids. The particles are useful as catalysts for refining processes. They are essentially completely de-coked upon regeneration, and they retain their catalytic activity even after several cycles of use-regeneration.