Abstract:
A camera system includes an optical assembly including a folded optic, the folded optic including a transparent support substrate, a first lens surface on a first surface of the transparent support substrate, and a second lens surface on the first surface of the transparent support substrate, at least one of the first and second lens surfaces including a replication material, and a sensor configured to receive light from the optical assembly that has been incident on both the first and second lens surfaces sequentially.
Abstract:
Systems and methods for identifying surgical instruments by use of radio-frequency identification tags (RFID) are disclosed. In the systems and methods, each of a plurality of surgical instruments is provided with at least one RFID transponder tag storing identification information associated with the corresponding instrument. The tag may be adhered to, embedded, or potted within a portion of the instrument. Using an RFID reading device, a user may interrogate the tag, thereby identifying the particular instrument. This identification information may be used to index a database and retrieve a data record unique to that instrument. The systems and methods allow a user to track, inspect, and verify inbound and outbound surgical instruments, to assess, for example, the surgical instruments' duty life cycle usage.
Abstract:
A network element receives frames from multiple ring networks. Each ring network linked to the network element is supported by a designated support program. The received frames are monitored for conditions indicative of a failure in one of the ring networks. Upon detection of a failure condition, the designated support program for the failing ring network is determined and notified. The designated support program then addresses the failure condition by, for example, switching to a backup link. In one example, the multiple ring networks are SONET BLSR networks.
Abstract:
A micro-optical element includes a support substrate, a micro-optical lens in a cured replication material on a first surface of the support substrate, and an opaque material aligned with and overlapping the micro-optical lens along a vertical direction.
Abstract:
A device for releasably attaching a towel to clothing of a user. The device includes a towel having an eyelet passing therethrough and a clasp for extending through the eyelet and releasably connecting with an article of clothing of a user. The towel may be removed from engagement with the clasp for cleaning when desired. The attachment of the device to the clothing of the user allows a towel to be readily available to the user for drying the user or cleaning an object.
Abstract:
A semiconductor integrated circuit includes a hardware mechanism arranged to ensure that associations between instructions and data are enforced so that a processor cannot fetch data from an instruction that is not authorized to do so. A Memory Protection Unit stores entries comprising instructions and associated data memory ranges. A hardware arrangement impairs the operation of the circuit if the processor attempts to make a data fetch from an instruction that is outside the range associated with data in a Memory Protection Unit. Such functioning may be by issuing a chip reset. The Memory Protection Unit may be implemented in a Memory Management Unit having an extension so as to store a validity flag. The validity flag may only be set by a secure process such as the CPU well entrusted code or by a separate trusted hardware source.
Abstract:
An optics block includes a substrate having first and second opposing surfaces, the substrate being a first material, a plurality of through holes extending in the substrate between the first and second opposing surface, a second material, different than the first material, filling a portion of the through holes and extending on a portion of the first surface of the substrate outside the through holes, and a first lens structure in the second material and corresponding to each of the through holes.
Abstract:
A camera system includes an optical assembly including a folded optic, the folded optic including a transparent support substrate, a first lens surface on a first surface of the transparent support substrate, and a second lens surface on the first surface of the transparent support substrate, at least one of the first and second lens surfaces including a replication material, and a sensor configured to receive light from the optical assembly that has been incident on both the first and second lens surfaces sequentially.
Abstract:
An optics block includes a substrate having first and second opposing surfaces, the substrate being a first material, a plurality of through holes extending in the substrate between the first and second opposing surface, a second material, different than the first material, filling a portion of the through holes and extending on a portion of the first surface of the substrate outside the through holes, and a first lens structure in the second material and corresponding to each of the through holes.
Abstract:
A method and apparatus for automatically identifying surgical implants by use of a radio-frequency tag (RFID) is disclosed. The method, apparatus, and system enable a radio-frequency tagged implant to receive an interrogation signal from a reader and to respond to the interrogation signal with identifying information about the tagged implants. The interrogation signal interrogates the implant to ascertain its information, and the RFID tag affixed on the implant in turn transmits a signal back to the reader. The method, apparatus, and system can track, inspect, and verify surgical implants, to assess, for example, any wear and tear on implants, and/or positional displacement of components of the implant.