Abstract:
Techniques to support emergency voice-over-Internet Protocol (VoIP) calls are described. The techniques may be used for various 3GPP and 3GPP2 networks, various location architectures, and various types of User Equipment (UE). A UE communicates with a visited network to send a request to establish an emergency VoIP call. The UE interacts with a location server instructed by the visited network to obtain a first position estimate for the UE. The UE performs call setup via the visited network to establish the emergency VoIP call with a PSAP, which may be selected based on the first position estimate. The UE may thereafter perform positioning with the location server to obtain an updated position estimate for the UE, e.g., if requested by the PSAP.
Abstract:
Techniques are discussed for supporting positioning with ambiguous wireless cells. An ambiguous cell may employ a Distributed Antenna System (DAS), one or more Remote Radio Heads (RRHs), repeaters or relays, or may broadcast the same Positioning Reference Signal (PRS) as another nearby cell. In example techniques, measurements of a radio source in an ambiguous cell (e.g. a DAS antenna element or RRH) may be used to identify the measured radio source. The measurements may be for the Observed Time Difference of Arrival (OTDOA) position method or the Enhanced Cell ID (ECID) position method. The determination of the measured radio source for an ambiguous cell may be used to improve a location estimate for a user equipment (UE).
Abstract:
Techniques for querying for information on location sessions in a user plane location architecture are described. In an aspect, a location server may send a query message to a terminal to query for information on active location sessions, e.g., when at least one location session for periodic triggered service or area event triggered service is deemed to be active. The terminal may return a response message containing a list of session identifiers (IDs) for the active location sessions, parameters for the active location sessions, capabilities of the terminal, etc. The location server may compare the information received from the terminal and information stored at the location server. The location server may terminate each location session deemed to be active at only the terminal or only the location server. The location server may restart or terminate each location session having inconsistent parameters at the terminal and the location server.
Abstract:
Systems, apparatus and methods for a mobile device and a base station almanac server to throttle crowdsourcing information are presented. The crowdsourcing information is used to improve a location of a base station in a base station almanac. A portion of the base station almanac is provided to a mobile device. For example, the mobile device may identify its current cell and request the base station almanac. The mobile device records crowdsourcing information to identify, for each particular base station of at least one base station, a cellular identifier for the particular base station, optional ranging information between the particular base station and the mobile device, and an independent position of the mobile device. The independent position of the mobile device may be formed from global navigation satellite system (GNSS) or station signals independent of the at least one base station.
Abstract:
Techniques to support emergency voice-over-Internet Protocol (VoIP) calls are described. The techniques may be used for various 3GPP and 3GPP2 networks, various location architectures, and various types of User Equipment (UE). A UE communicates with a visited network to send a request to establish an emergency VoIP call. The UE interacts with a location server instructed by the visited network to obtain a first position estimate for the UE. The UE performs call setup via the visited network to establish the emergency VoIP call with a PSAP, which may be selected based on the first position estimate. The UE may thereafter perform positioning with the location server to obtain an updated position estimate for the UE, e.g., if requested by the PSAP.
Abstract:
A method of determining, at a server, an altitude of a mobile device, includes: receiving, at the server from the mobile device, a present barometric pressure at the mobile device; and determining, at the server, an altitude of the mobile device based on the present barometric pressure and a present reference barometric pressure at a known altitude.
Abstract:
A method of providing pressure information from a mobile device includes: measuring a barometric pressure at the mobile device; determining a present barometric pressure based on the measured barometric pressure; and sending, from the mobile device toward a server, the present barometric pressure. The server may determine an altitude for the mobile device based on the present barometric pressure and a known reference pressure for a known altitude. The method may further include providing pressure statistics and/or calibration points by the mobile device to the server where the calibration points include pressure measurements for known or determinable locations. The calibration points may enable the server to determine a calibration value to enable an adjustment or correction to the measured barometric pressure.
Abstract:
Systems, apparatus and methods for a mobile device and a base station almanac server to throttle crowdsourcing information are presented. The crowdsourcing information is used to improve a location of a base station in a base station almanac. A portion of the base station almanac is provided to a mobile device. For example, the mobile device may identify its current cell and request the base station almanac. The mobile device records crowdsourcing information to identify, for each particular base station of at least one base station, a cellular identifier for the particular base station, optional ranging information between the particular base station and the mobile device, and an independent position of the mobile device. The independent position of the mobile device may be formed from global navigation satellite system (GNSS) or station signals independent of the at least one base station.
Abstract:
Systems, apparatus and methods for a mobile device and a base station almanac server to throttle crowdsourcing information are presented. The crowdsourcing information is used to improve a location of a base station in a base station almanac. A portion of the base station almanac is provided to a mobile device. For example, the mobile device may identify its current cell and request the base station almanac. The mobile device records crowdsourcing information to identify, for each particular base station of at least one base station, a cellular identifier for the particular base station, optional ranging information between the particular base station and the mobile device, and an independent position of the mobile device. The independent position of the mobile device may be formed from global navigation satellite system (GNSS) or station signals independent of the at least one base station.
Abstract:
Techniques disclosed herein provide for enhanced LTE Positioning Protocol (LPP) Reliable Transport where the receiver of an LPP message sends a non-piggybacked acknowledgement. An example method for executing on a mobile device a protocol session with a location server includes sending a first protocol session message associated with a first protocol session to the location server, entering a wait-for-acknowledgement state in which uplink transmissions from the mobile device to the location server are suspended while waiting for an acknowledgement from the location server in response to the first protocol session message, receiving a second protocol session message associated with a second protocol session which is not an acknowledgement to the first protocol session message but includes information requested in the first protocol session message; exiting the wait-for-acknowledgement state responsive to receiving the second protocol session message; and performing an action using the information received in the second protocol session message.