Abstract:
Methods, systems, and devices are described that provide for D2D synchronization. The methods, systems, and/or devices may include tools and techniques that provide for synchronizing a mobile device based on detection of a reliability alarm. A reliability alarm may be used between mobile devices, which is transmitted and/or received on specific D2D resources. Since the resources are reserved for the reliability alarm, a mobile device which was previously isolated from network synchronization will be able to receive the reliability alarm that a reliable synchronization signal is close when it moves within range of a reliable device. Once a reliability alarm is received the mobile device may free other resources to allow it to receive synchronization signals from the reliable devices. The mobile device may then synchronize with the network based on the received synchronization signals and transmit its own reliability alarm for subsequent isolated devices to use.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with enabling timing source selection and deselection in a decentralized manner for distributed D2D synchronization in densely populated communications systems. In an example, a communications device, functioning in a non-timing source (TS) mode, is equipped to receive a request for timing information during a synchronization channel. The communications device may further be equipped to determine whether to switch to a TS mode based on a selection utility metric value. In another example, a communications device, functioning in a TS mode, is equipped to transmit a TIB during a synchronization channel, and determine whether to switch to a non-TS mode based on a deselection utility metric value. In the TS mode, the UE is configured to transmit a TIB, while in the non-TS mode the UE is configured not to transmit the TIB.
Abstract:
Methods and apparatus are described for refining, e.g., reducing, a paging area corresponding to a user equipment device, e.g., a cellular inactive UE device. Various embodiments are well suited for communications systems in which user equipment devices participate in peer to peer communications networks in which direct user device to user device communications are employed. A user equipment device participating in a peer to peer network transmits discovery signals. A femto base station and/or a cellular active UE device in the local vicinity of the UE device transmitting the peer to peer discovery signal eavesdrops on the peer discovery signaling and detects the presence of the cellular inactive UE device. The detection of the cellular inactive UE device is reported to a MME. The MME determines a paging area corresponding to the detected UE device based on the reported information and the location of the reporting device.
Abstract:
A communications system includes a plurality of different types of small coverage area base stations, e.g., femto cell base stations, WiFi access points and Bluetooth access points within a macro cell. Different user equipment (UE) devices, e.g., different smartphones, include different capabilities. In order for UE devices and small coverage area base stations with compatible capabilities to efficiently discover one another, the various small coverage area base stations and various UE devices utilize the macro cell communications band and macro cell communication protocol to coordinate device discovery and exchange discovery information and control information which allows a UE device to access a compatible small coverage area base station and subsequently communicate user data, e.g., traffic data, with the UE device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE determines timing information associated with a synchronization signal to be transmitted. The timing information includes a hop count and a reliability indicator associated with the synchronization signal. The reliability indicator is independent of the hop count and indicates one of reliable or unreliable. The UE broadcasts the timing information with the synchronization signal. The hop count may be a number of hops the synchronization signal is from a base station synchronization signal received from a base station.
Abstract:
Methods and apparatus for allocation of resources for handover related measurements in a communications system including user equipment (UE) devices, a macro base station and small base stations (e.g., femtocells) are described. Some embodiments are well suited for systems where the number of femtocells may equal or outnumber the number of UE devices. In some embodiments a macro base station allocates periodic communications resources for transmission of pilots by UEs or femtocells. The macro base station configures either femtocells or active UEs to transmit pilots using the allocated communications resources based on the relative number of femtocells to active UEs in the coverage area of the macro base station, devices which are lower in number transmitting the pilots. Transmitters (UE devices or femtocells) transmit pilots along with identification information using the allocated resource(s) and receivers measure the pilot signals. The pilot signal measurements may be used to make handover decisions.