Abstract:
A method for controlling a power train and corresponding system. A method for controlling a power train equipping a motor vehicle and comprising an electric motor provided with a rotor and a stator, said method comprising the regulation of the currents of the rotor and the stator delivering control signals to the electric motor, said currents to be regulated and said control signals being expressed in a rotating reference system and comprising a plurality of axes. The method includes a measurement of the values of the currents of the rotor and the stator, a transformation of said measurements into said rotating reference system, a determination of minimum and maximum limits for each of the currents on the basis of said control signals, and a comparison of the measured signals with said minimum and maximum limits.
Abstract:
A method of controlling charge of a battery, or of a battery of a motor vehicle, on the basis of a monophase network, in which: the input voltage is filtered; the electrical power of the network is conveyed to the battery via a voltage step-down stage and a voltage step-up stage which are coupled together via an inductive component; and an intensity of current passing through the inductive component is controlled as a function of an intensity setpoint, the intensity not being continuously controllable. The intensity setpoint is formulated to have at least a first value and at least a second value greater than the first value, the intensity setpoint having the second value before the start of a phase during which the intensity is not controllable.
Abstract:
A secure system for charging a battery of a motor vehicle from a power supply network, which system is in a vehicle and includes a mechanism measuring frequency of the network, an injection mechanism injecting current pulses into the network, a mechanism measuring voltage between the ground and a neutral of the network, an analog filter filtering the measured voltages at high frequencies, a digital filter filtering the analog-filtered voltages at low frequencies, and a mechanism determining resistance between the ground and the neutral of the network on the basis of the digitally filtered voltages and an amplitude of the current pulses. The digital filter includes a mean value filter which determines a mean value based on N voltage measurements spaced apart by a time interval T+T/N, where T is the period of the network determined by the mechanism measuring the frequency of the network.
Abstract:
A system and method for controlling a power train of a motor vehicle having an electric motor includes regulating the currents in the rotor and stator of the electric motor so that they reach required current values using control signals of the electric motor. The currents to be regulated and the control signals being expressed in a rotating reference frame including a plurality of axes. The control signals result from a transformation including a change of variable allowing the dynamic decoupling of the regulation along each of the axes. Regulating each axis includes an application to the current to be regulated of two different linear operators as a function of the value of the current to be regulated of that axis with respect to its required value, the result of the application of the two linear operators having to be substantially equal to the control signal of that axis.
Abstract:
A method for controlling a battery charger for a motor vehicle, the battery charger including an input filter connecting a three-phase power supply circuit to a buck converter, a boost circuit being connected to the buck converter and to the battery. The method includes: determining an output threshold voltage of the buck converter on the basis of the difference between a battery-current measurement and a battery-current request; keeping the output voltage of the buck converter constant; and controlling switches of the boost stage to be kept open.
Abstract:
A secure system for charging a battery of a motor vehicle from a power supply network, which system is in a vehicle and includes a mechanism measuring frequency of the network, an injection mechanism injecting current pulses into the network, a mechanism measuring voltage between the ground and a neutral of the network, an analog filter filtering the measured voltages at high frequencies, a digital filter filtering the analog-filtered voltages at low frequencies, and a mechanism determining resistance between the ground and the neutral of the network on the basis of the digitally filtered voltages and an amplitude of the current pulses. The digital filter includes a mean value filter which determines a mean value based on N voltage measurements spaced apart by a time interval T+T/N, where T is the period of the network determined by the mechanism measuring the frequency of the network.
Abstract translation:一种用于从电力网络(该系统在车辆中)并且包括测量网络频率的机构,向电网中注入电流脉冲的注入机构,用于测量地面之间的电压的机构对汽车的电池进行充电的安全系统 和网络的中性点,对高频测量电压进行滤波的模拟滤波器,以低频率滤波模拟滤波电压的数字滤波器,以及基于网络的接地和中性点之间的电阻的机制 数字滤波电压和电流脉冲的幅度。 数字滤波器包括平均值滤波器,其基于以时间间隔T + T / N间隔开的N个电压测量值来确定平均值,其中T是通过测量网络频率的机制确定的网络周期。
Abstract:
A system and method for controlling a power train of a motor vehicle having an electric motor includes regulating the currents in the rotor and stator of the electric motor so that they reach required current values using control signals of the electric motor. The currents to be regulated and the control signals being expressed in a rotating reference frame including a plurality of axes. The control signals result from a transformation including a change of variable allowing the dynamic decoupling of the regulation along each of the axes. Regulating each axis includes an application to the current to be regulated of two different linear operators as a function of the value of the current to be regulated of that axis with respect to its required value, the result of the application of the two linear operators having to be substantially equal to the control signal of that axis.
Abstract:
A device synchronizes primary speed of a primary shaft receiving an electrical torque from an electric machine with a secondary speed lower than the primary speed of a secondary transmission shaft. The primary shaft and secondary shaft are decoupled. The primary shaft has a kinetic energy associated with the primary speed. The device provides electrical braking torque to the primary shaft until the primary speed is substantially equal to the secondary speed. The device also at least partially recovers, in the form of electrical energy, the kinetic energy lost by the primary shaft and transmits the electrical energy to an energy storage device.
Abstract:
A method for estimating an insulation resistance between a point of a high-voltage circuit including a high-voltage motor vehicle battery and a ground of the vehicle includes measuring a voltage value at terminals of a measurement circuit that includes a capacitive element connected to the battery and calculating a standard deviation value based on the measured voltage value and based on a theoretical voltage value estimated from a model of the measurement circuit. The model is a function of a capacitance value of the capacitive element. The method also includes calculating an averaged deviation value from the standard deviation value and previous deviation values and estimating an updated insulation resistance value in accordance with the averaged deviation value.
Abstract:
A method for controlling a power train and corresponding system. A method for controlling a power train equipping a motor vehicle and comprising an electric motor provided with a rotor and a stator, said method comprising the regulation of the currents of the rotor and the stator delivering control signals to the electric motor, said currents to be regulated and said control signals being expressed in a rotating reference system and comprising a plurality of axes. The method includes a measurement of the values of the currents of the rotor and the stator, a transformation of said measurements into said rotating reference system, a determination of minimum and maximum limits for each of the currents on the basis of said control signals, and a comparison of the measured signals with said minimum and maximum limits.