Abstract:
A method for controlling a battery charger for a motor vehicle, the battery charger including an input filter connecting a three-phase power supply circuit to a buck converter, a boost circuit being connected to the buck converter and to the battery. The method includes: determining an output threshold voltage of the buck converter on the basis of the difference between a battery-current measurement and a battery-current request; keeping the output voltage of the buck converter constant; and controlling switches of the boost stage to be kept open.
Abstract:
A method for setting an anticipator module with which a control device controls the trajectory of a motor vehicle is equipped includes detecting whether the anticipator module is unsuitable during a turn by taking account of a lateral deviation with respect to an ideal trajectory and/or a contribution of a feedback module of the control device, determining primary parameters, calculating a secondary parameter by an optimization-based calculation method taking account of the determined primary parameters, and updating a bicycle model of the vehicle by taking account of the calculated secondary parameter.
Abstract:
A method for controlling a battery charger for a motor vehicle, the battery charger including an input filter connecting a three-phase power supply circuit to a buck converter, a boost circuit being connected to the buck converter and to the battery. The method includes: determining an output threshold voltage of the buck converter on the basis of the difference between a battery-current measurement and a battery-current request; keeping the output voltage of the buck converter constant; and controlling switches of the boost stage to be kept open.
Abstract:
A device synchronizes primary speed of a primary shaft receiving an electrical torque from an electric machine with a secondary speed lower than the primary speed of a secondary transmission shaft. The primary shaft and secondary shaft are decoupled. The primary shaft has a kinetic energy associated with the primary speed. The device provides electrical braking torque to the primary shaft until the primary speed is substantially equal to the secondary speed. The device also at least partially recovers, in the form of electrical energy, the kinetic energy lost by the primary shaft and transmits the electrical energy to an energy storage device.
Abstract:
An anticipating module for a device for controlling, in real time, the path of a motor vehicle includes a sub-module for computing a turning command for compensating for the curvature of a bend in the lane of the vehicle and a variable-gain device that is connected to an output of the computing sub-module. The gain of the variable-gain device is connected to a controller to adjust the gain so as to decrease the lateral offset between the centre of gravity of the vehicle and the centre of the lane of the vehicle depending on the result of the comparison of components of a vector of current measurements of state variables of the device to one another and to a detection threshold, the output of the variable-gain device being the steering command for compensating for the curvature of the bend.
Abstract:
A battery of accumulators including a plurality of power storage cells and an electrical network which connects the cells to one another. The cells are grouped together in composite cells including two identical branches each including at least one cell and the composite cells being connected in series to one another. The electrical network includes: a mechanism for parallel or connection in series of the cells of each composite cell, and a mechanism for controlling the connection mechanism, which is configured to connect the cells of each composite cell in parallel or in series to adapt an output voltage of the battery of accumulators to a desired value and to balance charging states of the cells.
Abstract:
A battery of accumulators including a plurality of power storage cells and an electrical network which connects the cells to one another. The cells are grouped together in composite cells including two identical branches each including at least one cell and the composite cells being connected in series to one another. The electrical network includes: a mechanism for parallel or connection in series of the cells of each composite cell, and a mechanism for controlling the connection mechanism, which is configured to connect the cells of each composite cell in parallel or in series to adapt an output voltage of the battery of accumulators to a desired value and to balance charging states of the cells.
Abstract:
A method of controlling charge of a battery, or of a battery of a motor vehicle, on the basis of a monophase network, in which: the input voltage is filtered; the electrical power of the network is conveyed to the battery via a voltage step-down stage and a voltage step-up stage which are coupled together via an inductive component; and an intensity of current passing through the inductive component is controlled as a function of an intensity setpoint, the intensity not being continuously controllable. The intensity setpoint is formulated to have at least a first value and at least a second value greater than the first value, the intensity setpoint having the second value before the start of a phase during which the intensity is not controllable.