Abstract:
An in-situ deposition and doping method for polycrystalline silicon layers of semiconductor devices. A first intermediate layer of in-situ doped polycrystalline silicon is grown, and a second additional layer of polycrystalline silicon is grown with a lower doping level than that of the first intermediate layer of polycrystalline silicon. In one preferred method, the second doping level is substantially lower than the first doping level. Additionally, a semiconductor memory device of the type having a gate stack is provided. The memory device includes at least one gate layer of polycrystalline silicon, and the gate layer of polycrystalline silicon is formed from a first intermediate layer of polycrystalline silicon with a first doping level, and an overlaying second additional layer of polycrystalline silicon with a second doping level that is lower than the first doping level. In a preferred embodiment, the second doping level is substantially lower than the first doping level.
Abstract:
Presented is a memory cell integrated in a semiconductor substrate that includes a MOS device connected in series to a capacitive element. The MOS device has first and second conduction terminals, and the capacitive element has a lower electrode covered with a layer of a dielectric material and capacitively coupled to an upper electrode. The MOS device is overlaid by at least one metallization layer that is covered with at least one top insulating layer. The capacitive element is formed on the top insulating layer. The cell is unique in that the metallization layer extends only between the MOS device and the capacitive element.
Abstract:
A contact structure for semiconductor devices which are integrated on a semiconductor layer is provided. The structure comprises at least one MOS device and at least one capacitor element where the contact is provided at an opening formed in an insulating layer which overlies at least in part the semiconductor layer. Further, the opening has its surface edges, walls and bottom coated with a metal layer and filled with an insulating layer.
Abstract:
The cells of the stacked type each comprise a MOS transistor formed in an active region of a substrate of semiconductor material and a capacitor formed above the active region; each MOS transistor has a first and a second conductive region and a control electrode and each capacitor has a first and a second plate separated by a dielectric region material, for example, ferroelectric one. The first conductive region of each MOS transistor is connected to the first plate of a respective capacitor, the second conductive region of each MOS transistor is connected to a respective bit line, the control electrode of each MOS transistor is connected to a respective word line, the second plate of each capacitor is connected to a respective plate line. The plate lines run perpendicular to the bit line and parallel to the word lines. At least two cells adjacent in a parallel direction to the bit lines share the same dielectric region material. In this way, the manufacturing process is not critical and the size of the cells is minimal.
Abstract:
A circuit structure for semiconductor devices which are integrated on a semiconductor layer is provided. The structure comprises at least one MOS device and at least one capacitor element that has a bottom and a top electrode. The MOS device has conduction terminals formed in the semiconductor layer, as well as a control terminal covered with an overlying insulating layer of unreflowed oxide. The capacitor element is formed on the unreflowed oxide layer.
Abstract:
An integrated edge structure for a high voltage semiconductor device comprising a PN junction represented by a diffused region of a first conductivity type extending from a semiconductor device top surface is described. The edge structure comprises a first, lightly doped ring of the first conductivity type obtained in a first, lightly doped epitaxial layer of a second conductivity type and surrounding said diffused region, and a second, lightly doped ring of the first conductivity type, comprising at least one portion superimposed on and merged with said first ring, obtained in a second, lightly doped epitaxial layer of the second conductivity type grown over the first epitaxial layer.
Abstract:
A PIC structure comprises a lightly doped semiconductor layer of a first conductivity type, superimposed over a heavily doped semiconductor substrate of the first conductivity type, wherein a power stage and a driving and control circuitry including first conductivity type-channel MOSFETs and second conductivity type-channel MOSFETs are integrated; the first conductivity type-channel and the second conductivity type-channel MOSFETs are provided inside second conductivity type and first conductivity type well regions, respectively, which are included in at least one isolated lightly doped region of the first conductivity type completely surrounded and isolated from the lightly doped layer of the first conductivity type by means of a respective isolation region of a second conductivity type.
Abstract:
An integrated circuit containing both power and small-signal NPN bipolar devices. The small-signal devices use lateral current flow, and are completely surrounded (laterally and vertically) by an N-type well region. The N-type well region itself is completely surrounded (laterally and vertically) by a P-type isolation region. This double isolation provides improved protection against turn-on of parasitic devices, which can cause leakage problems in the conventional device structures. Optionally a self-aligned process step is used to provide a graded base doping profile in the small-signal devices.
Abstract:
A smart power integrated circuit with dynamic isolation. A P-type isolation region surrounds the small signal devices (npn bipolar transistors and possibly other devices). This isolation region is held at ground in normal operation; but one or more pilot circuits continually monitor the collector voltages of the small-signal and power npn transistors, and instantly reconnect this isolation region, in real time, to the lowest collector voltage, whenever any of the collector voltages go below ground. Preferably a large capacitor provides a dedicated supply to the pilot circuit, so that the reconnection operation can proceed even when a power supply glitch occurs.
Abstract:
A monolithically integrated, transistor bridge circuit of a type suiting power applications, comprises at least one pair of IGBT transistors (M1,M2) together with vertically-conducting bipolar junction transistors transistors (T1,T2). These IGBT transistors are laterally conducting, having drain terminals (9,19) formed on the surface of the integrated circuit (1), and through such terminals, they are connected to another pair of transistors (T1,T2) of the bipolar type.