摘要:
Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
摘要:
A medical device is provided, having an elongate body defining a distal portion and a proximal portion; a first expandable member disposed on the distal portion of the elongate body and defining a cooling chamber therein, the first expandable member having a first rigidity; a second expandable member disposed around the first expandable member to define an interstitial region therebetween, where the second expandable member has a second rigidity less than the first rigidity; a gel disposed within the interstitial region; a coolant flow path in fluid communication with the cooling chamber; and a cryogenic coolant source in fluid communication with the coolant flow path.
摘要:
A method of treating tissue is provided, including positioning a stimulation device proximate a phrenic nerve; stimulating the phrenic nerve with the stimulation device; measuring a physiological response to the stimulation; defining a threshold physiological response value based at least in part on the measured physiological response; positioning a thermal treatment element proximate to an arrhythmogenic cardiac tissue region; applying a thermal treatment regimen to the cardiac tissue region with the medical device; measuring a physiological parameter during the thermal treatment regimen application; and conveying the measured physiological parameter to a controller, the controller comparing the measured physiological parameter to the defined physiological response value threshold, the controller adjusting the thermal treatment regimen in response to the comparison of the measured physiological parameter to the defined physiological response value threshold.
摘要:
A cryogenic catheter includes an outer flexible member having at least one cryogenic fluid path through the flexible member. The at least one fluid path is defined by a plurality of flexible members disposed within the outer flexible member.
摘要:
Systems and methods for controllably variable fluid flow are disclosed that provide the ability to modify the effective cross-sectional area of the fluid delivery conduit available for fluid flow. Accordingly, selective control of these configurations allows fluid flow to be regulated as desired while the fluid delivery pressure remains the same. Additional configurations provided herein allow for the selective manipulation of a footprint or therapeutic pattern achievable with the medical device during a single procedure, negating the need for the removal and insertion of multiple devices to achieve the same variations in treatment geometry or characteristics.
摘要:
A medical device, including an elongate body having a proximal portion and a distal portion; a shaft at least partially disposed within the elongate body; an expandable element at the distal portion of the elongate body; and a fluid delivery conduit defining a deflectable segment movably coupled to the shaft, the deflectable segment being transitionable from a substantially linear configuration to a substantially curvilinear configuration.
摘要:
A catheter includes a cryoablation tip with an electrically-driven ablation assembly for heating tissue. The cryoablation tip may be implemented with a cooling chamber through which a controllably injected coolant circulates to lower the tip temperature, and having an RF electrode at its distal end. The RF electrode may be operated to warm cryogenically-cooled tissue, or the coolant may be controlled to conductively cool the tissue in coordination with an RF treatment regimen.
摘要:
A method of ablating tissue is provided, including positioning an expandable element of a catheter in a blood vessel; inflating the expandable element with a volume of refrigerant to substantially occlude the blood vessel; measuring the volume of refrigerant used to inflate the expandable element; correlating the measured volume to an inflated dimension of the expandable element; defining at least one of a target pressure within the expandable element and a target flow rate for refrigerant delivery to the expandable element based at least in part on the inflated dimension; regulating refrigerant delivery to the expandable element to attain the at least one defined target pressure within the expandable element or defined target flow rate for fluid delivery to the expandable element; and ablating at least a portion of the blood vessel with the expandable element.
摘要:
A medical device is provided that may include a catheter body having proximal and distal portions, a fluid injection lumen disposed within elongate body, and a guidewire lumen disposed within the elongate body. A tip portion defining a cavity in fluid communication with the fluid injection lumen may be coupled to the distal end of the guidewire lumen, and an expandable element may be coupled to the distal portion of the catheter body and to the tip portion, such that the expandable element is in fluid communication with the fluid injection lumen. A shaping element may at least partially surround the expandable element, where the shaping element is configurable in a first geometric configuration and a second geometric configuration.
摘要:
The present invention provides a medical system, including a catheter defining an injection lumen, a chamber in fluid communication with the injection lumen, and an exhaust lumen in fluid communication with the chamber; a first temperature sensor positioned in the exhaust lumen proximal to the chamber; a second temperature sensor positioned in the chamber; and a console in electrical communication with the first and second temperature sensors, the controller modifying coolant flow through the medical device based at least in part upon a signal received from the first and second temperature sensor. The system may further include a thermally-conductive element circumscribing a substantial portion of the exhaust lumen proximal to the chamber, where the first temperature sensor is mounted to the thermally-conductive element, and the thermally-conductive element may include at least one of a braid, coil, and band.