Abstract:
An efficient software download to a configurable communication device is disclosed herein. The method of efficiently downloading software begins with a step of receiving a request to configure a communication device to run a communication application. The communication device being configured has a plurality of function blocks with a fixed portion of hardware and a flexible portion of hardware, wherein the same plurality of function blocks is capable of operating a plurality of communication applications. In a next step, the capability of the fixed portion and the flexible portion of hardware of the communication device is evaluated for a capability of implementing the communication application. Next, configuration information only for the flexible portion of hardware of the communication device is transmitted to the communication device to enable it to operate the communication application. An identification of the communication application is also transmitted to the communication device for purposes of tracking its implementation.
Abstract:
An efficient software download to a configurable communication device is disclosed herein. The method of efficiently downloading software begins with a step of receiving a request to configure a communication device to run a communication application. The communication device being configured has a plurality of function blocks with a fixed portion of hardware and a flexible portion of hardware, wherein the same plurality of function blocks is capable of operating a plurality of communication applications. In a next step, the capability of the fixed portion and the flexible portion of hardware of the communication device is evaluated for a capability of implementing the communication application. Next, configuration information only for the flexible portion of hardware of the communication device is transmitted to the communication device to enable it to operate the communication application. An identification of the communication application is also transmitted to the communication device for purposes of tracking its implementation.
Abstract:
An apparatus for digitally processing signals within wireless communications base-stations which includes a channel pooling signal processor and a digital signal processor. The channel pooling signal processor includes a plurality of computation units typically realized in a heterogeneous multiprocessing architecture, a test interface for testing the function of the plurality of the computation units, a general-purpose microprocessor for managing the dataflow into and out of the channel pooling signal processor as well as effecting the control and configuration of the computation units, and an interconnect mechanism for connecting the plurality of computation units to the input, output, test interface, and the general-purpose microprocessor.
Abstract:
A wireless spread spectrum communication platform for processing a communication signal is disclosed herein. The wireless communication platform includes a first computing element, a second computing element, and a reconfigurable interconnect. The first computing element is coupled to the second computing element via the reconfigurable interconnect. A design configuration of the first computing element is heterogeneous with respect to a design configuration of the second computing element. The reconfigurable interconnect has an uncommitted architecture, thereby allowing it to be configured by an outside source to couple portions of the first reconfigurable interconnect with portions of the second reconfigurable interconnect in a variety of combinations. The first computing element, the second computing element, and the reconfigurable interconnect operable to perform discrete functions suitable for processing of the communication signal.
Abstract:
A monolithic CMOS programmable digital intermediate frequency receiver includes a programmable memory, a clock generator, a sigma delta converter, a digital downconverter, and a decimation filter network. The programmable memory receives and stores a first value representative of a programmable parameter k and a second value representative of programmable parameter N. Coupled to the programmable memory, the clock generator generates a first clock signal, a second clock signal and a third clock signal. The first clock signal has a first frequency, fl, the second clock signal has a second frequency approximately equal to fl/k and the third clock signal has a third frequency approximately equal to fl/N. The sigma delta converter samples an analog input signal having an intermediate frequency using the first clock signal to generate a first set of digital signals. The digital downconverter mixes down the first set of digital signals using the second clock signal to generate a second set of digital signals. Finally, the decimation filter network filters the second set of digital signals using the third clock signal to generate a third set of digital signals.
Abstract:
A rake receiver in accordance with an exemplary embodiment of this invention is configurable by an external agent (e.g., microcontroller, DSP, or state machine) to suit the particular requirements of different spread spectrum systems. In an exemplary embodiment, the receiver includes multiple fingers. Each finger includes a plurality of generic despreaders/descramblers, a plurality of generic dechannelizers coupled to the despreaders/descramblers, and at least one timing estimation controller coupled to the despreaders/descramblers. The finger also includes at least one phase estimation controller, at least one frequency estimation controller, and at least one energy estimation controller all coupled to the generic dechannelizers.
Abstract:
A method of optimally positioning an imaging device comprising the steps of storing a reference image; continuously obtaining an acquired view with the imaging device; determining whether the imaging device is in an optimal position by periodically comparing the acquired image with the reference image; and adjusting the position of the imaging device if the imaging device is not in an optimal position.
Abstract:
The present invention provides an adaptable codec for use in a communication system. The adaptable codec is capable of encoding a digital stream to be transmitted according to any one of a number of encoding schemes. A particular encoding scheme may be selected based on information received from a network entity that is separate from the communication system, a user associated with the communication system, a remote communication system with which communications are established, or a combination thereof. Once a particular encoding scheme is selected, an encoder will encode the digital stream to be transmitted, and a packet processor will create packets from the encoded digital stream. The selection of an encoding scheme will generally correspond to a desired quality of experience level.
Abstract:
The present invention allows primary communication sessions that are established between two communication clients to be monitored, wherein such monitoring occurs without the knowledge of the communication clients. An intercept tunnel is created between an intercept server and an access concentration point, which supports at least one of the communication clients over an access network. The access concentration point and the intercept server will cooperate to allow the communication session to be established, wherein a portion of the communication session will be established over the intercept tunnel. A first communication session is established with the first communication client through the access concentration point, a portion of it provided via the intercept tunnel. A second communication session is established with the second communication client. The intercept server will essentially receive and forward traffic to and from the first and second communication clients over respective first and second communication sessions.
Abstract:
An efficient software download to a configurable communication device is disclosed herein. The method of efficiently downloading software begins with a step of receiving a request to configure a communication device to run a communication application. The communication device being configured has a plurality of function blocks with a fixed portion of hardware and a flexible portion of hardware, wherein the same plurality of function blocks is capable of operating a plurality of communication applications. In a next step, the capability of the fixed portion and the flexible portion of hardware of the communication device is evaluated for a capability of implementing the communication application. Next, configuration information only for the flexible portion of hardware of the communication device is transmitted to the communication device to enable it to operate the communication application. An identification of the communication application is also transmitted to the communication device for purposes of tracking its implementation.