Abstract:
A hydraulic cam follower for simultaneous actuation of several equal-acting gas-exchange valves, especially for a tappet pushrod valve train of an engine, includes an outer part, whose base forms a cam contacting surface, and from whose head hollow-cylindrical guides extend in the same number as the valves in a direction towards the base. A housing of a hydraulic play compensation element is provided in each guide and sits with its bottom side on an inside of the bottom of the outer part. A concentric pressure piston is guided in a borehole starting from a head end of each housing so it can move axially. A non-return valve is located at a bottom-side base of the piston and a high-pressure space is formed axially between the base and the bottom side of the housing. A reservoir for hydraulic medium is formed between the base and a head end of the piston.
Abstract:
The low profile valve lifter assembly has flats inside the bore of the outer housing and walls are formed and extended down from the plate of the guide such that the walls align with the flats of the bore to prevent rotation of the lifter with the guide. A groove and protuberance are provided in the flats and on the side wall of the guide in order to properly orient the lifter with the guide. The flats can be connected to form a pocket and the walls of the guide can be connected to form a sleeve that mates with the pocket.
Abstract:
A hydraulic cam follower (1) for the simultaneous actuation of several equal-acting gas-exchange valves is provided, especially for a tappet pushrod valve train of an internal combustion engine, and includes an outer part (2), whose base (3) forms or is at least indirectly connected to a cam contacting surface (4) and from whose head (5) hollow-cylindrical guides (6) extend in the same number as the equal-acting gas-exchange valves in a direction towards the base (3). Each guide (6) is formed by a cutting process, such as internal round reaming or internal round broaching, and a housing (7) of a hydraulic play compensation element (8) is provided in each guide with its outer casing (9) fine-machined by grinding, which housing (7) sits with its bottom side (10) on an inner side (11) of the bottom (3) of the outer part (2). A concentric pressure piston (14) is guided in a borehole (13) fine-machined by grinding starting from a head end (12) of each housing (7) with its outer casing (15), which is also fine-machined by grinding, so that it can move axially. A non-return valve (17) is located at a bottom-side base (16) of the pressure piston (14), and a high-pressure space (18) is formed axially between the base (16) and the bottom side (10) of the housing (7). A reservoir (20) for hydraulic medium is formed between the base (16) and a head end (19) of the pressure piston (14).
Abstract:
A switchable valve train for gas-exchange valves of internal combustion engines with a rocker arm device (1), in which a rocking motion about a rocker arm axis (3) can be introduced by at least one cam (2a, 2b), one tappet, or the like, wherein this rocking motion can be transmitted to at least one valve (4). The rocker arm device (1) is formed from at least one cam lever part (5) in working connection with the cam (2) and a valve lever part (6) in working connection with the valve (4), which are supported so that they can rock about the rocker arm axis (3). A coupling device is constructed between the cam lever part (5) and the valve lever part (6), in order to selectively engage and disengage the transmission of the rocking motion.
Abstract:
A hydraulic cam follower (1), such as a roller tappet, is provided. This is used for the actuation of two identically operating gas-exchange valves and should be installed inclined to the direction of the force of gravity. The cam follower (1) comprises a pot-shaped housing (2), whose bottom (3) is provided with a roller as a cam contacting element (4). In the housing (2), two guides (5) extending parallel to the direction of the internal combustion engine are provided, in each of which a pressure piston (6) is arranged so that it can move axially, whose end (7) away from the housing is constructed as a support for contact with a respective tappet pushrod. Each pressure piston (6) encloses a reservoir (11) for hydraulic medium. For each pressure piston (6), an opening (13) extends from the outer casing (12) of the housing (2) for feeding hydraulic medium to the reservoirs (11), wherein the openings (13) are arranged on a peripheral segment of the outer casing (12) lying at the top viewed in the direction of the force of gravity. Thus, a so-called double roller tappet is provided as a cam follower (1), which can store a sufficiently large amount of hydraulic medium despite its inclined installation.
Abstract:
A hydraulic cam follower (1), such as a roller tappet, is provided. This is used for the actuation of two identically operating gas-exchange valves and should be installed inclined to the direction of the force of gravity. The cam follower (1) comprises a pot-shaped housing (2), whose bottom (3) is provided with a roller as a cam contacting element (4). In the housing (2), two guides (5) extending parallel to the direction of the internal combustion engine are provided, in each of which a pressure piston (6) is arranged so that it can move axially, whose end (7) away from the housing is constructed as a support for contact with a respective tappet pushrod. Each pressure piston (6) encloses a reservoir (11) for hydraulic medium. For each pressure piston (6), an opening (13) extends from the outer casing (12) of the housing (2) for feeding hydraulic medium to the reservoirs (11), wherein the openings (13) are arranged on a peripheral segment of the outer casing (12) lying at the top viewed in the direction of the force of gravity. Thus, a so-called double roller tappet is provided as a cam follower (1), which can store a sufficiently large amount of hydraulic medium despite its inclined installation.
Abstract:
A valve deactivation device for a rocker arm assembly having a cam arm and a valve arm is provided. A return spring biases a locking latch pin toward an activated position to allow the cam arm and the valve arm to rotate together. The latch pin can be translated against the biasing force of the return spring to decouple the cam arm and valve arm for relative rotation. The latch pin and the latch pin housing are adjusted so as to limit the clearance between them and mate the latch pin and the latch housing. The cam follower and the actuator section of the rocker arm are mounted on, and are not independent of, the rocker shaft. Clearances between parts are controlled such that their relative rotation is strictly limited in the selective engagement of the latch pin in one section and latch pin receiving hole in the other section.
Abstract:
Proposed is a switchable valvetrain (1) for an internal combustion engine, having a row of rocker arms (2) which extend in the longitudinal direction of a cylinder head, which rocker arms (2) run via a recess (7) on their upper side (6) on a head (8) of a bearing journal (9), which bearing journal (9) is axially moveably arranged in a bore (10) of a carrier (11)/insert part (11a) which runs above, with piston-like coupling means (12) being provided for selectively coupling the bearing journal (9) to the carrier (11).
Abstract:
An animal chew is provided formed by rolling a mixture of binder and base material into a sheet. Base material, such as an edible material, including but not limited to starch, protein matter, vegetable or plant matter, is mixed with a binder. The mixture is then supplied to a screw conveyor followed by introduction onto rollers to form a sheet. The sheet may then be cut into a desired shape. The overall process may be made continuous, and the manufacturing conditions may be selectively controlled at each step, with respect to variable a such as temperature and moisture levels, to substantially maintain the overall nutritional value of the formed edible compositions.
Abstract:
An animal chew is provided formed by rolling a mixture of binder and base material into a sheet. Base material, such as an edible material, including but not limited to starch, protein matter, vegetable or plant matter, is mixed with a binder. The mixture is then supplied to a screw conveyor followed by introduction onto rollers to form a sheet. The sheet may then be cut into a desired shape. The overall process may be made continuous, and the manufacturing conditions may be selectively controlled at each step, with respect to variable such as temperature and moisture levels, to substantially maintain the overall nutritional value of the formed edible compositions.