Abstract:
A movable barrier operator having a motor controller (10) and motor (11) that control selective movement of a movable barrier (12) also has an obstacle detector (14) that utilizes an automatically determined excess force threshold value to permit reliable detection of an obstacle under a wide variety of operational circumstances, including changing physical circumstances, aging components, temperature variations, and motor runtime. In a preferred embodiment, a characteristic force value for the system is frequently updated as a function of actual measured force requirements (and further compensated, pursuant to various embodiments, with respect to other conditions such as temperature and motor runtime). This characteristic force value is then utilized to determine the excess force threshold value.
Abstract:
The present invention comprises a system for remote control of garage doors and other devices wherein an extremely large number of codes are available for remote transmitters for operating the garage operator and wherein each transmitter has its own unique and permanent nonuser changeable code. The receiver at the garage door operator is capable of storing and remembering a number of different codes corresponding to different transmitters such that the receiver can be programmed so as to actuated by more than one transmitted code thus allowing two or more transmitters to actuate the same garage door operator and wherein the receiver stores the valid codes for the different transmitters.
Abstract:
The present invention comprises a system for remote control of garage doors and other devices wherein an extremely large number of codes are available for remote transmitters for operating the garage operator and wherein each transmitter has its own unique and permanent nonuser changeable code. The receiver at the garage door operator is capable of storing and remembering a number of different codes corresponding to different transmitters such that the receiver can be programmed so as to actuated by more than one transmitted code thus allowing two or more transmitters to actuate the same garage door operator and wherein the receiver stores the valid codes for the different transmitters.
Abstract:
The present invention comprises a system for remote control of garage doors and other devices wherein an extremely large number of codes are available for remote transmitters for operating the garage operator and wherein each transmitter has its own unique and permanent nonuser changeable code. The receiver at the garage door operator is capable of storing and remembering a number of different codes corresponding to different transmitters such that the receiver can be programmed so as to actuated by more than one transmitter code thus allowing two or more transmitters to actuate the same garage door operator and wherein the receiver stores the valid codes for the different transmitters.
Abstract:
The present invention comprises a system for remote control of garage doors and other devices wherein an extremely large number of codes are available for remote transmitters for operating the garage operator and wherein each transmitter has its own unique and permanent nonuser changeable code. The receiver at the garage door operator is capable of storing and remembering a number of different codes corresponding to different transmitters such that the receiver can be programmed so as to actuated by more than one transmitted code thus allowing two or more transmitters to actuate the same garage door operator and wherein the receiver stores the valid codes for the different transmitters.
Abstract:
A movable barrier operator having a motor controller (10) and motor (11) that control selective movement of a movable barrier (12) also has an obstacle detector (14) that utilizes an automatically determined excess force threshold value to permit reliable detection of an obstacle under a wide variety of operational circumstances, including changing physical circumstances, aging components, temperature variations, and motor runtime. In a preferred embodiment, a characteristic force value for the system is frequently updated as a function of actual measured force requirements (and further compensated, pursuant to various embodiments, with respect to other conditions such as temperature and motor runtime). This characteristic force value is then utilized to determine the excess force threshold value.
Abstract:
A movable barrier operator having an electrical motor responsive to control signals for moving the barrier, a controller to control the barrier movements, and two command apparatuses for generating command inputs, which command apparatuses are located remotely from each other. The first command apparatus is mounted in a location remote from the controller and easily accessible by the users, and the second command apparatus is located close proximity to the controller to be easily accessible by an installer at the time of service.
Abstract:
A movable barrier operator having improved safety and energy efficiency features automatically detects line voltage frequency and uses that information to set a worklight shut-off time. The operator automatically detects the type of door (single panel or segmented) and uses that information to set a maximum speed of door travel. The operator moves the door with a linearly variable speed from start of travel to stop for smooth and quiet performance. The operator provides for full door closure by driving the door into the floor when the DOWN limit is reached and no auto-reverse condition has been detected. The operator provides for user selection of a minimum stop speed for easy starting and stopping of sticky or binding doors.