Abstract:
A method for determination of the amount of a specific analyte in a sample which may show a prozone effect by photometric assays, wherein the specific analyte is quantified from the change in the optical signal of the reaction mixture after the interaction of the analyte with analyte specific assay reagents. The optical signal is measured simultaneously for the specific analyte in the sample to be determined at the wavelength used for the determination of the analyte and at least at an additional specific wavelength used for the detection of the prozone effect over the complete reaction time. The reaction rate ratio R is calculated by using the signals obtained at the wavelength used for the detection of the prozone effect. By comparison of the calculated ratio value R with predetermined limit values it is judged if a prozone effect is present in the sample.
Abstract:
The present description relates to a liquid composition having at least one immune-modulatory macrolide compound and an essentially cell-free blood hemolysate. The present description further relates to a method for manufacturing a stabilized immune-modulatory macrolide calibration solution, by a) preparing a solution comprising an essentially cell-free blood hemolysate, b) admixing a predetermined amount of at least one immune-modulatory macrolide into said solution comprising an essentially cell-free blood hemolysate, and, thereby c) manufacturing a stabilized immune-modulatory macrolide calibration solution. Furthermore, the present description relates to kits, uses, devices, methods and to an immune-modulatory macrolide compound calibration solution related thereto.
Abstract:
A method for determination of the amount of a specific analyte in a sample which may show a prozone effect by photometric assays, wherein the specific analyte is quantified from the change in the optical signal of the reaction mixture after the interaction of the analyte with analyte specific assay reagents. The optical signal is measured simultaneously for the specific analyte in the sample to be determined at the wavelength used for the determination of the analyte and at least at an additional specific wavelength used for the detection of the prozone effect over the complete reaction time. The reaction rate ratio R is calculated by using the signals obtained at the wavelength used for the detection of the prozone effect. By comparison of the calculated ratio value R with predetermined limit values it is judged if a prozone effect is present in the sample.
Abstract:
A method for determining the amount of specific analyte of a sample which may show interferences by photometric assays, wherein the analyte is quantified from the change in the optical signal of the reaction mixture after the interaction of the analyte with analyte specific reagents. Multiple calibration curves are generated for multiple wavelengths for the specific analyte. An interference test is performed simultaneously to the determination of the specific analyte, for quantifying the amount of interfering substances present in the sample. The amount of each interfering substances is compared to predetermined cut-off values. The optical signal for the specific analyte is measured in the reaction mixture at multiple wavelengths over the complete reaction time, and a calibration curve is selected depending on the interfering substances. The amount of specific analyte is quantified by comparison with the selected calibration curve for the chosen wavelengths.
Abstract:
A method for determining the amount of a specific analyte by photometric assays, wherein the specific analyte in a sample reacts with an analyte specific reaction partner in a reaction mixture. At least two calibration curves are generated, the first calibration curve recorded at a first wavelength is optimized for low concentrations of the specific analyte thereby maximizing the lower detection limit and, the second calibration curve recorded at a second wavelength is optimized for high concentrations of the specific analyte thereby maximizing the upper detection limit. The optimized lower detection limit and the optimized upper detection limit results in an extended dynamic range.
Abstract:
A medical system for determining an analyte quantity in a blood sample via a cartridge that spins around a rotational axis. The cartridge may include: a separation chamber that separates blood plasma from the sample; a processing chamber containing a reagent with a specific binding partner which binds to the analyte to form an analyte specific binding partner complex; a first valve structure connecting the separation chamber to the processing chamber; a measurement structure to measure the quantity of the analyte, wherein the measurement structure includes a chromatographic membrane with an immobilized binding partner for direct or indirect binding of the analyte or the analyte specific binding partner complex, and an absorbent structure that is nearer to the axis than the membrane; a second valve structure connecting the processing chamber to the measurement structure; and a fluid chamber filled with a washing buffer and fluidically connected to the measurement structure.
Abstract:
Novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, for example in the electrochemiluminescence based detection of an analyte.