Abstract:
A method of performing an optical measurement of an analyte in a processed biological sample using a cartridge is provided. The cartridge is operable for being spun around a rotational axis. The method comprises: placing the biological sample into a sample inlet; controlling the rotational rate of the cartridge to process a biological sample into the processed biological sample using a fluidic structure; controlling the rotational rate of the cartridge to allow the processed biological sample to flow from the measurement structure inlet to an absorbent structure via a chromatographic membrane, and performing an optical measurement of a detection zone on the chromatographic membrane with an optical instrument. An inlet air baffle reduces evaporation of the processed biological sample from the chromatographic membrane during rotation of the cartridge.
Abstract:
An automatic analyzer cartridge, spinnable about a rotational axis, has fluid and aliquoting chambers, a metering chamber connected to a vent that is nearer to the rotational axis than the metering chamber, first and second ducts connecting the fluid and aliquoting chambers, and the metering and aliquoting chambers, respectively. Metering chamber side walls taper away from a central region, wherein capillary action next to the walls is greater than in the central region. Fluid flows to the metering chamber using capillary action via the second duct that has an entrance and exit in the aliquoting and metering chambers, respectively; the exit being closer to the rotational axis than the entrance. A downstream fluidic element connects to the metering chamber via a valve. A fluidic structure receives and processes a biological sample into the processed biological sample and has a measurement structure that enables measurement of the processed biological sample.
Abstract:
A method and cartridge for determining an amount of at least two analytes in a biological sample and an automatic analyzer are disclosed. The cartridge may comprise a cartridge inlet, a sample holding chamber fluidically connected to the inlet, and two or more metering chambers. Each metering chamber may comprise a sample inlet, a sample outlet, and a metered outlet for dispensing a predetermined volume. At least one sample distribution channel is connected between the sample outlet of a metering chamber with a sample inlet of another metering chamber. For each metering chamber, a connecting tube fluidically connects the sample inlet with the sample holding chamber, a microfluidic structure for processing the sample into a processed sample connects to the sample outlet, and a measurement structure fluidically connects to the microfluidic structure and enables measurement of the processed sample to determine the amount of the analyte in the processed sample.
Abstract:
An automatic analyzer cartridge, spinnable about a rotational axis, has fluid and aliquoting chambers, a metering chamber connected to a vent that is nearer to the rotational axis than the metering chamber, first and second ducts connecting the fluid and aliquoting chambers, and the metering and aliquoting chambers, respectively. Metering chamber side walls taper away from a central region, wherein capillary action next to the walls is greater than in the central region. Fluid flows to the metering chamber using capillary action via the second duct that has an entrance and exit in the aliquoting and metering chambers, respectively; the exit being closer to the rotational axis than the entrance. A downstream fluidic element connects to the metering chamber via a valve. A fluidic structure receives and processes a biological sample into the processed biological sample and has a measurement structure that enables measurement of the processed biological sample.
Abstract:
An automatic analyzer cartridge, spinnable around a rotational axis, has a support structure with a front face perpendicular to the rotational axis, a fluidic structure for processing a biological sample into the processed biological sample, a measurement structure with at least one detection zone on the front face, and a rotatable lid covering the front face. The rotatable lid is rotatable about the rotational axis relative to the support structure from a first position relative to the support structure to a second position relative to the support structure. The rotatable lid has a sample inlet opening and a detection zone opening. In the first position, a sample inlet is aligned with the sample inlet opening and the measurement structure is covered by the rotatable lid. In the second position, the sample inlet is covered by the rotatable lid and the measurement structure is aligned with the detection zone opening.
Abstract:
An automatic analyzer cartridge, spinnable about a rotational axis, has fluid and aliquoting chambers, a metering chamber connected to a vent that is nearer to the rotational axis than the metering chamber, first and second ducts connecting the fluid and aliquoting chambers, and the metering and aliquoting chambers, respectively. Metering chamber side walls taper away from a central region, wherein capillary action next to the walls is greater than in the central region. Fluid flows to the metering chamber using capillary action via the second duct that has an entrance and exit in the aliquoting and metering chambers, respectively; the exit being closer to the rotational axis than the entrance. A downstream fluidic element connects to the metering chamber via a valve. A fluidic structure receives and processes a biological sample into the processed biological sample and has a measurement structure that enables measurement of the processed biological sample.
Abstract:
An automatic analyzer cartridge, spinnable around a rotational axis, has aliquoting and metering chambers, a connecting duct there between, and a vent connected to the metering chamber and nearer to the rotational axis than the metering chamber. The metering chamber has side walls that taper away from a central region. Capillary action next to the side walls is greater than in the central region. A circular arc about the rotational axis passes through a duct entrance in the aliquoting chamber and a duct exit in the metering chamber. The cartridge has a downstream fluidic element which is part of a fluidic structure for processing a biological sample into the processed biological sample. A valve connects the metering chamber to the fluidic element, which is fluidically connected to the fluidic structure. The fluidic structure receives the biological sample and has a measurement structure for enabling measurement of the processed biological sample.
Abstract:
System and method of determining an amount of an analyte in a blood sample using a cartridge and blood collector are disclosed. The blood collector has a mounting surface, a capillary structure with a curved portion, and a capillary inlet. The cartridge has a receiving surface, a cartridge inlet, a microfluidic structure, and a measurement structure. The method includes placing the blood sample into the capillary inlet; attaching the mounting surface to the receiving surface; rotating the cartridge about a rotational axis to transport the blood sample from the capillary structure to the cartridge inlet and into the microfluidic structure; controlling the rotation of the cartridge to process the blood sample into the processed sample using the microfluidic structure; controlling the rotation of the cartridge to transfer the processed sample to the measurement structure; and measuring the amount of the analyte using the measurement structure and a measurement system.
Abstract:
An automatic analyzer cartridge, spinnable about a rotational axis, has fluid and aliquoting chambers, a metering chamber connected to a vent that is nearer to the rotational axis than the metering chamber, first and second ducts connecting the fluid and aliquoting chambers, and the metering and aliquoting chambers, respectively. Metering chamber side walls taper away from a central region, wherein capillary action next to the walls is greater than in the central region. Fluid flows to the metering chamber using capillary action via the second duct that has an entrance and exit in the aliquoting and metering chambers, respectively; the exit being closer to the rotational axis than the entrance. A downstream fluidic element connects to the metering chamber via a valve. A fluidic structure receives and processes a biological sample into the processed biological sample and has a measurement structure that enables measurement of the processed biological sample.
Abstract:
A method of performing a measurement of an analyte in a sample using an automatic analyzer is provided. The automatic analyzer comprises: a cartridge for dispensing a fluid, a measurement unit for performing the measurement, a sample holder for receiving the sample, and a pump for pumping the fluid out of the cartridge and into the sample holder. The cartridge comprises: a rigid portion, a flexible bladder, and an outlet. The rigid portion comprises an opening, which is connected to an inner cavity. The flexible bladder seals the opening to form a fluid chamber from the inner cavity. The fluid chamber is at least partially filled with the fluid. The pump is connected to the outlet. The method comprises: placing the sample into the sample holder, controlling the pumping of the fluid from the cartridge into the sample holder, and performing the measurement of the analyte using the measurement unit.