Abstract:
A method of performing an optical measurement of an analyte in a processed biological sample using a cartridge is provided. The cartridge is operable for being spun around a rotational axis. The method comprises: placing the biological sample into a sample inlet; controlling the rotational rate of the cartridge to process a biological sample into the processed biological sample using a fluidic structure; controlling the rotational rate of the cartridge to allow the processed biological sample to flow from the measurement structure inlet to an absorbent structure via a chromatographic membrane, and performing an optical measurement of a detection zone on the chromatographic membrane with an optical instrument. An inlet air baffle reduces evaporation of the processed biological sample from the chromatographic membrane during rotation of the cartridge.
Abstract:
An automatic analyzer cartridge, spinnable around a rotational axis, has a support structure with a front face perpendicular to the rotational axis, a fluidic structure for processing a biological sample into the processed biological sample, a measurement structure with at least one detection zone on the front face, and a rotatable lid covering the front face. The rotatable lid is rotatable about the rotational axis relative to the support structure from a first position relative to the support structure to a second position relative to the support structure. The rotatable lid has a sample inlet opening and a detection zone opening. In the first position, a sample inlet is aligned with the sample inlet opening and the measurement structure is covered by the rotatable lid. In the second position, the sample inlet is covered by the rotatable lid and the measurement structure is aligned with the detection zone opening.
Abstract:
A method of dispensing a particle mixture and a reagent fluid cartridge are presented. The cartridge comprises a first reservoir partially filled with reagent fluid, a second reservoir partially filled with particles, a pumping chamber, a first pumping chamber conduit connecting the first reservoir and the pumping chamber, a second pumping chamber conduit connecting the second reservoir and the pumping chamber, an outlet for dispensing reagent fluid and particles from the cartridge, an outlet conduit connecting the outlet to the pumping chamber, and a valve sealing the outlet conduit. The method comprises closing the valve, applying a force to the plunger to transport a first defined volume of reagent fluid and second defined volume of particles into the pumping chamber to form a mixture of reagent fluid and particles, opening the valve, and forcing the mixture from the pumping chamber using the plunger to dispense the mixture from the outlet.
Abstract:
System and method of determining an amount of an analyte in a blood sample using a cartridge and blood collector are disclosed. The blood collector has a mounting surface, a capillary structure with a curved portion, and a capillary inlet. The cartridge has a receiving surface, a cartridge inlet, a microfluidic structure, and a measurement structure. The method includes placing the blood sample into the capillary inlet; attaching the mounting surface to the receiving surface; rotating the cartridge about a rotational axis to transport the blood sample from the capillary structure to the cartridge inlet and into the microfluidic structure; controlling the rotation of the cartridge to process the blood sample into the processed sample using the microfluidic structure; controlling the rotation of the cartridge to transfer the processed sample to the measurement structure; and measuring the amount of the analyte using the measurement structure and a measurement system.
Abstract:
A method of performing a measurement of an analyte in a sample using an automatic analyzer is provided. The automatic analyzer comprises: a cartridge for dispensing a fluid, a measurement unit for performing the measurement, a sample holder for receiving the sample, and a pump for pumping the fluid out of the cartridge and into the sample holder. The cartridge comprises: a rigid portion, a flexible bladder, and an outlet. The rigid portion comprises an opening, which is connected to an inner cavity. The flexible bladder seals the opening to form a fluid chamber from the inner cavity. The fluid chamber is at least partially filled with the fluid. The pump is connected to the outlet. The method comprises: placing the sample into the sample holder, controlling the pumping of the fluid from the cartridge into the sample holder, and performing the measurement of the analyte using the measurement unit.
Abstract:
A cartridge for dispensing a fluid is provided, the cartridge comprising: a reservoir chamber configured for receiving the fluid, the reservoir chamber having a fluid outlet and a cover with a first bearing; and a stirring assembly comprising a stirrer located inside the reservoir chamber, the stirring assembly comprising a shaft connected to the stirrer. The stirring assembly can be moved between first and second positions, wherein in the first position the stirring assembly can seal the fluid outlet, the stirring assembly in the first position being configured to form a second bearing with the reservoir chamber or the fluid outlet such that the stirrer can be rotated about an axis defined by the first and second bearing, and wherein if the stirring assembly is in the second position the fluid can pass through the fluid outlet, the shaft being configured to transmit rotational power to the stirrer.
Abstract:
An automatic analyzer cartridge, spinnable around a rotational axis, has a support structure with a front face perpendicular to the rotational axis, a fluidic structure for processing a biological sample into the processed biological sample, a measurement structure with at least one detection zone on the front face, and a rotatable lid covering the front face. The rotatable lid is rotatable about the rotational axis relative to the support structure from a first position relative to the support structure to a second position relative to the support structure. The rotatable lid has a sample inlet opening and a detection zone opening. In the first position, a sample inlet is aligned with the sample inlet opening and the measurement structure is covered by the rotatable lid. In the second position, the sample inlet is covered by the rotatable lid and the measurement structure is aligned with the detection zone opening.
Abstract:
A cartridge for dispensing a fluid is provided, the cartridge comprising: a reservoir chamber configured for receiving the fluid, the reservoir chamber having a fluid outlet and a cover with a first bearing; and a stirring assembly comprising a stirrer located inside the reservoir chamber, the stirring assembly comprising a shaft connected to the stirrer. The stirring assembly can be moved between first and second positions, wherein in the first position the stirring assembly can seal the fluid outlet, the stirring assembly in the first position being configured to form a second bearing with the reservoir chamber or the fluid outlet such that the stirrer can be rotated about an axis defined by the first and second bearing, and wherein if the stirring assembly is in the second position the fluid can pass through the fluid outlet, the shaft being configured to transmit rotational power to the stirrer.
Abstract:
A cartridge for dispensing fluid is presented. The cartridge comprises a valve. The valve comprises a pumping chamber for pumping the fluid. The valve positions a pumping chamber conduit. The pumping chamber conduit is connected to the pumping chamber. The cartridge further comprises a plunger for changing the volume of the pumping chamber. The cartridge further comprises a reservoir conduit for connecting the reservoir with the valve. The valve positions the pumping chamber conduit to connect with the reservoir conduit. The cartridge further comprises an outlet conduit for dispensing the fluid. The valve further rotates the pumping chamber conduit to connect with the outlet conduit.
Abstract:
A cartridge for dispensing a fluid is presented. The cartridge comprises a reservoir chamber for receiving the fluid. The reservoir chamber has a fluid outlet. The cartridge further comprises a controllable dispenser component for dispensing a dispensing volume of the fluid from the reservoir chamber. The dispenser component is connected to the fluid outlet of the reservoir. The cartridge further comprises a single compressible fluid pump with a single elastic pumping element and a conduit extending from the fluid pump towards the fluid outlet. The fluid pump discharges a mixing volume of the fluid from the conduit into the reservoir chamber upon compression of the elastic pumping element. The mixing volume depends on the degree of compression of the elastic pumping element. The fluid pump sucks in the mixing volume from the reservoir into the conduit upon decompression of the elastic pumping element.