摘要:
Examples are disclosed that relate to selectively dimming or occluding light from a real-world background to enhance the display of virtual objects on a near-eye display. One example provides a near-eye display system including a see-through display, an image source, a background light sensor, a selective background occluder comprising a first liquid crystal panel and a second liquid crystal panel positioned between a pair of polarizers, and a computing device including instructions executable by a logic subsystem to determine a shape and a position of an occlusion area based upon a virtual object to be displayed, obtain a first and a second birefringence pattern for the first and the second liquid crystal panels, produce the occlusion area by applying the birefringence patterns to the liquid crystal panels, and display the virtual object in a location visually overlapping with the occlusion area.
摘要:
In embodiments of selective illumination, an illumination system includes light sources implemented for selective illumination of a target within a field of view of an imaging system. The illumination system also includes optics that can be positioned to direct light that is generated by a subset of the light sources to illuminate a region within the field of view. An imaging application can activate the subset of the light sources and position the optics to illuminate the region within the field of view that includes the target of the selective illumination.
摘要:
A monocular display device of a head mounted monocular display is adjustably positioned in front of a display eye of a user. The monocular display device displays information in a first field of view of the display eye. An occluding device is adjustably positioned in front of a non-display eye of the user. The occluding device blocks a second field of view of the non-display eye, the blocking being regulated to block at least a part of the second field of view that corresponds to the first field of view containing the displayed information.
摘要:
Various technologies are applied to focus audio received from a plurality of microphones of a mobile device. A camera can be used to portray a scene, and a selection within the scene can focus audio to a desired audio focus region. Techniques can account for movement of the mobile device or an object being tracked. Pre-computed audio filters can be used to customize the audio focus process to account for a particular mobile device geometry.
摘要:
In embodiments of transparent display interaction, a portable device includes a handheld base movably coupled to a display device. The display device includes a display panel system that displays an image, and includes display surfaces through which the image is viewable. The image may appear as being projected into an environment behind the display device and viewable through the display surfaces of the display device. The display device is also configurable to open relative the handheld base to a position that the environment is viewable through the display device.
摘要:
Embodiments include a smart personal gateway device (SPGD) that augments the capabilities of smart personal devices (SPDs) connected in a personal area network (PAN). The SPGD implements services for the SPDs using computing resources of the SPGD. In some embodiments, the SPGD provides carrier-grade voice services to SPDs lacking hardware to support such services (e.g., SPDs supporting Wi-Fi only).
摘要:
A salient control element for a mobile device comprises at least one button actuatable by a user to execute a mobile device function. The button has at least a first active state in which the button is extended or retracted relative to a surrounding surface and a second inactive state in which the button is substantially flush with the surrounding surface. The button is reconfigurable between the active state and the inactive state based upon a triggering event. The triggering event comprises at least one of receiving signals indicating a position, motion or orientation of the device, signals indicating a mode of operation or time, signals indicating that a predetermined application or service is active, signals indicating a current wireless communication, or signals indicating the mobile device is in a predetermined venue.
摘要:
A system and method are disclosed for determining a depth map using TOF with low power consumption. In order to disambiguate, or de-alias, the returned distance(s) for a given phase shift, the system may emit n different frequencies of light over n successive image frames. After n frames of data are collected, the distances may be correlated by a variety of methodologies to determine a single distance to the object as measured over n image frames. As one frequency may be emitted per image frame, the depth map may be developed while consuming low power.
摘要:
In embodiments of laser illumination scanning, an imaging unit includes a linear array of spatial light modulators that direct light in a direction perpendicular to an imaging scan direction. The lasers each emit the light through a diffractive optic that uniformly illuminates the spatial light modulators, and a scanning mirror then scans the spatial light modulators to generate a two-dimensional image for display. The lasers can include red, green, and blue lasers for RGB illumination of the spatial light modulators, which can be implemented as reflective liquid crystal on silicon (LCOS), transmissive LCOS, or as micro-electro-mechanical systems (MEMS) mirrors.
摘要:
In embodiments of eyebox adjustment for interpupillary distance, a first optical lens receives light of an image from a display optic at a projected orientation of the light, and the first optical lens deviates the light of the image by a deviation angle from the projected orientation of the light. A second optical lens receives the light of the image from the first optical lens at the deviation angle, and the second optical lens alters the deviated light of the image back to the projected orientation of the light for viewing the image. Left and right eyeboxes align with respective left and right eyes that view the image, and a distance between the left and right eyeboxes approximately correlates to an interpupillary distance between the left and right eyes. The light of the image can be laterally shifted to increase or decrease the distance between the left and right eyeboxes.