摘要:
Examples are disclosed that relate to selectively dimming or occluding light from a real-world background to enhance the display of virtual objects on a near-eye display. One example provides a near-eye display system including a see-through display, an image source, a background light sensor, a selective background occluder comprising a first liquid crystal panel and a second liquid crystal panel positioned between a pair of polarizers, and a computing device including instructions executable by a logic subsystem to determine a shape and a position of an occlusion area based upon a virtual object to be displayed, obtain a first and a second birefringence pattern for the first and the second liquid crystal panels, produce the occlusion area by applying the birefringence patterns to the liquid crystal panels, and display the virtual object in a location visually overlapping with the occlusion area.
摘要:
A head-mounted light-field display system (HMD) includes two light-field projectors (LFPs), one per eye, each comprising a solid-state LED emitter array (SLEA) operatively coupled to a microlens array (MLA). The SLEA and the MLA are positioned so that light emitted from an LED of the SLEA reaches the eye through at most one microlens from the MLA. The HMD's LFP comprises a moveable solid-state LED emitter array coupled to a microlens array for close placement in front of an eye—without the need for any additional relay or coupling optics—wherein the LED emitter array physically moves with respect to the microlens array to mechanically multiplex the LED emitters to achieve resolution via mechanically multiplexing.
摘要:
In embodiments of imaging structure color conversion, an imaging structure includes a silicon backplane with a driver pad array. An embedded light source is formed on the driver pad array in an emitter material layer, and the embedded light source emits light in a first color. A conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer. A color conversion layer can then convert a portion of the first color to at least a second color. Further, micro lens optics can be implemented to direct the light that is emitted through the color conversion layer.
摘要:
In embodiments of active reflective surfaces, an imaging structure includes a circuit control layer that controls pixel activation to emit light. A reflective layer of the imaging structure reflects input light from an illumination source. An active color conversion material that is formed on the reflective layer converts the input light to the emitted light. The active color conversion material can be implemented as a phosphorus material or quantum dot material that converts the input light to the emitted light, and in embodiments, the active color conversion material is laminated directly on the reflective layer.
摘要:
A low-power, high-resolution, see-through (i.e., “transparent”) augmented reality (AR) display without projectors with relay optics separate from the display surface but instead feature a small size, low power consumption, and/or high quality images (high contrast ratio). The AR display comprises sparse integrated light-emitting diode (iLED) array configurations, transparent drive solutions, and polarizing optics or time multiplexed lenses to combine virtual iLED projection images with a user's real world view. The AR display may also feature full eye-tracking support in order to selectively utilize only the portions of the display(s) that will produce only projection light that will enter the user's eye(s) (based on the position of the user's eyes at any given moment of time) in order to achieve power conservation.
摘要:
In embodiments of imaging structure color conversion, an imaging structure includes a silicon backplane with a driver pad array. An embedded light source is formed on the driver pad array in an emitter material layer, and the embedded light source emits light in a first color. A conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer. A color conversion layer can then convert a portion of the first color to at least a second color. Further, micro lens optics can be implemented to direct the light that is emitted through the color conversion layer.
摘要:
In embodiments of an imaging structure with embedded light sources, an imaging structure includes a silicon backplane with a driver pad array. The embedded light sources are formed on the driver pad array in an emitter material layer, and the embedded light sources can be individually controlled at the driver pad array to generate and emit light. A conductive material layer over the embedded light sources forms a p-n junction between the emitter material layer and the conductive material layer. Micro lens optics can be positioned over the conductive material layer to direct the light that is emitted from the embedded light sources. Further, the micro lens optics may be implemented as parabolic optics to concentrate the light that is emitted from the embedded light sources.
摘要:
In embodiments of an imaging structure with embedded light sources, an imaging structure includes a silicon backplane with a driver pad array. The embedded light sources are formed on the driver pad array in an emitter material layer, and the embedded light sources can be individually controlled at the driver pad array to generate and emit light. A conductive material layer over the embedded light sources forms a p-n junction between the emitter material layer and the conductive material layer. Micro lens optics can be positioned over the conductive material layer to direct the light that is emitted from the embedded light sources. Further, the micro lens optics may be implemented as parabolic optics to concentrate the light that is emitted from the embedded light sources.
摘要:
In embodiments of active reflective surfaces, an imaging structure includes a circuit control layer that controls pixel activation to emit light. A reflective layer of the imaging structure reflects input light from an illumination source. An active color conversion material that is formed on the reflective layer converts the input light to the emitted light. The active color conversion material can be implemented as a phosphorus material or quantum dot material that converts the input light to the emitted light, and in embodiments, the active color conversion material is laminated directly on the reflective layer.
摘要:
A device for combining tomographic images with human vision using a half-silvered mirror to merge the visual outer surface of an object (or a robotic mock effector) with a simultaneous reflection of a tomographic image from the interior of the object. The device maybe used with various types of image modalities including ultrasound, CT, and MRI. The image capture device and the display may or may not be fixed to the semi-transparent mirror. If not fixed, the imaging device may provide a compensation device that adjusts the reflection of the displayed ultrasound on the half-silvered mirror to account for any change in the image capture device orientation or location.