摘要:
The present invention is in the field of producing organic acids and other useful chemicals via biological fermentation using glycerol as a source of carbon. Novel microorganisms and fermentation processes are described that are capable of converting glycerol to useful organic acids in high yield and high purity.
摘要:
This invention relates to the production of chemicals by fermentation with a microorganism in which the fermentation medium contains the sugar sucrose. As a specific example, succinic acid is produced from a sucrose-containing renewable feedstock through fermentation using a biocatalyst. Examples of such a biocatalyst include microorganisms that have been enhanced in their ability to utilize sucrose as a carbon and energy source. The biocatalysts of the present invention are derived from the genetic manipulation of parental strains that were originally constructed with the goal to produce one or more chemicals (for example succinic acid and/or a salt of succinic acid) at a commercial scale using feedstocks other than sucrose. The genetic manipulations of the present invention involve the introduction of exogenous genes involved in the transport and metabolism of sucrose into the parental strains. The genes involved in the transport and metabolism of sucrose can also be introduced into a microorganism prior to developing the organism to produce a particular chemical. The genes involved in the transport and metabolism of sucrose can also be used to augment or improve the sucrose transport and metabolism by strains already known to have some ability for sucrose utilization in biological fermentation.
摘要:
The present invention relates to microorganisms and processes for the efficient preparation of L-methionine. In particular, the present invention relates to processes in which the amount of serine available for the metabolism of the microorganism is increased.
摘要:
This invention relates to the production of chemicals by fermentation with a microorganism in which the fermentation medium contains the sugar sucrose. As a specific example, succinic acid is produced from a sucrose-containing renewable feedstock through fermentation using a biocatalyst. Examples of such a biocatalyst include microorganisms that have been enhanced in their ability to utilize sucrose as a carbon and energy source. The biocatalysts of the present invention are derived from the genetic manipulation of parental strains that were originally constructed with the goal to produce one or more chemicals (for example succinic acid and/or a salt of succinic acid) at a commercial scale using feedstocks other than sucrose. The genetic manipulations of the present invention involve the introduction of exogenous genes involved in the transport and metabolism of sucrose into the parental strains. The genes involved in the transport and metabolism of sucrose can also be introduced into a microorganism prior to developing the organism to produce a particular chemical. The genes involved in the transport and metabolism of sucrose can also be used to augment or improve the sucrose transport and metabolism by strains already known to have some ability for sucrose utilization in biological fermentation.
摘要:
This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.
摘要:
The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also featured. Also featured are compositions produced by such microorganisms.
摘要:
The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
摘要:
The present invention features methods of producing panto-compounds (e.g., pantothenate) using microorganisms in which the pantothenate biosynthetic pathway and/or the isoleucine-valine biosynthetic pathway and/or the coenzymeA biosynthetic pathway has been manipulated. Methods featuring ketopantoate reductase overexpressing microorganisms as well as aspartate α-decarboxylase overexpressing microorganisms are provided. Methods of producing panto-compounds in a precursor-independent manner and in high yield are described. Recombinant microorganisms, vectors, isolated nucleic acid molecules, genes and gene products useful in practicing the above methodologies are also provided. The present invention also features a previously unidentified microbial pantothenate kinase gene, coaX, as well as methods of producing panto-compounds utilizing microorganisms having modified pantothenate kinase activity. Recombinant microorganisms, vectors, isolated coaX nucleic acid molecules and purified CoaX proteins are featured. Also featured are methods for identifying pantothenate kinase modulators utilizing the recombinant microorganisms and/or purified CoaX proteins of the present invention.
摘要:
The present invention is in the field of producing organic acids and other useful chemicals via biological fermentation using glycerol as a source of carbon. Novel microorganisms and fermentation processes are described that are capable of converting glycerol to useful organic acids in high yield and high purity.
摘要:
A fermentation process is disclosed wherein the known antibiotic lysocellin is produced by the fermentation of a new species of Streptomyces denominated as Streptomyces longwoodensis (X-14537).