摘要:
Methods and systems are disclosed for adaptive error correction for non-volatile memories that dynamically adjust sense amplifier read detection windows. Memory control circuitry uses error correction code (ECC) routines to detect bit errors that are non-correctable using these ECC routines. The memory control circuitry then dynamically adjusts sense amplifier read detection windows to allow for correct data to be determined. Corrected data can then be output to external circuitry. The corrected data can also be stored for later access when subsequent read operations attempt to access address locations that previously suffered bit failures. The disclosed methods and systems can also be used with respect to memories that are not non-volatile memories.
摘要:
Methods and systems are disclosed for digital control for regulation of program voltages for non-volatile memory (NVM) systems. The disclosed embodiments dynamically adjust program voltages based upon parameters associated with the cells to be programmed in order to account for IR (current-resistance) voltage drops that occur within program voltage distribution lines. Other voltage variations can also be accounted for with these dynamic adjustments, as well. The parameters for cells to be programmed can include, for example, cell address locations for the cells to be programmed, the number of cells to be programmed, and/or other desired parameters associated with the cells to be programmed. The disclosed embodiments use digital control values obtained from lookup tables based upon the cell parameters to adjust output voltages generated by voltage generation circuit blocks used to program the selected cells thereby tuning the program output voltage level to a predetermined desired level.
摘要:
Methods and systems are disclosed for sector-based regulation of program voltages for non-volatile memory (NVM) systems. The disclosed embodiments regulate program voltages for NVM cells based upon feedback signals generated from sector return voltages that are associated with program voltage drivers that are driving program voltages to NVM cells within selected sectors an NVM array. As such, drops in program voltage levels due to IR (current-resistance) voltage losses in program voltage distribution lines are effectively addressed. This sector-based regulation of the program voltage effectively maintains the desired program voltage at the cells being programmed regardless of the sector being accessed for programming and the number of cells being programmed. Sector return voltages can also be used along with local program voltages to provide two-step feedback regulation for the voltage generation circuitry. Test mode configurations can also be provided using test input and/or output pads.
摘要:
Methods and systems are disclosed for sector-based regulation of program voltages for non-volatile memory (NVM) systems. The disclosed embodiments regulate program voltages for NVM cells based upon feedback signals generated from sector return voltages that are associated with program voltage drivers that are driving program voltages to NVM cells within selected sectors an NVM array. As such, drops in program voltage levels due to IR (current-resistance) voltage losses in program voltage distribution lines are effectively addressed. This sector-based regulation of the program voltage effectively maintains the desired program voltage at the cells being programmed regardless of the sector being accessed for programming and the number of cells being programmed. Sector return voltages can also be used along with local program voltages to provide two-step feedback regulation for the voltage generation circuitry. Test mode configurations can also be provided using test input and/or output pads.
摘要:
A semiconductor memory device includes a non-volatile memory, a memory controller, and a charge pump system. The memory controller establishes first parameters for a first programming cycle of a first plurality of memory cells of the non-volatile memory prior to the first programming cycle being performed. The charge pump system includes a plurality of charge pumps and provides a first programming pulse for use in performing the first program cycle. The first programming pulse is provided by selecting, according to the first parameters, which of the plurality of charge pumps are to be enabled during the first program cycle and which are to be disabled during the first program cycle.
摘要:
A configurable multistage charge pump including multiple pumpcells, at least one bypass switch and control logic. The pumpcells are coupled together in series including a first pumpcell receiving an input voltage and at least one remaining pumpcell including a last pumpcell which generates an output voltage. Each bypass switch is coupled to selectively provide the input voltage to a pumpcell input of a corresponding one of the remaining pumpcells. The control logic is configured to determine one of multiple voltage ranges of the input voltage, to enable each pumpcell for a first voltage range and to disable and bypass at least one pumpcell for at least one other voltage range. A method of operating a multistage charge pump including detecting an input voltage, selecting a voltage range based on an input voltage, and enabling a number of cascaded pumpcells corresponding to the selected voltage range.
摘要:
A charge pump charges a first capacitor to a predetermined input voltage using a first switch. The first switch is coupled to a first terminal of the first capacitor for coupling the first terminal to an input terminal that receives the predetermined input voltage. A second switch couples a second terminal of the first capacitor to a reference voltage terminal. Charge is sequentially transferred from the first capacitor to an output capacitance by using the first switch. A portion of charge is sequentially removed from the output capacitance to the input terminal using a third switch and a second capacitor. Configuration logic provides control signals to make one or more of a plurality of charge transfer capacitors switch the same as said first capacitor switches.
摘要:
A reference voltage regulation circuit (143) is provided in which one or more input voltage signals (Vref, Vref′) are selectively coupled to a configurable amplifier (114) which is coupled through a sample and hold circuit (120) to a voltage follower circuit (122) which is coupled in feedback to the configurable amplifier (114) for generating an adjusted output voltage at a circuit output (130), where the voltage follow circuit comprises a resistor divider circuit (126) that is controlled by a calibration signal (Cal ) generated by a counter circuit (128) selectively coupled to the output of the configurable amplifier when configured as a comparator for generating the calibration signal in response to a clock signal, where the calibration signal represents a voltage error component (Verror, Voffset) that is removed from the circuit output when the calibration signal is applied to the resistor divider circuit during normal operational.
摘要:
A level converter comprises first and second latches, and first through fourth transistors. The first latch has first and second power supply terminals, and first and second nodes. The second latch has third and fourth power supply terminals, and third and fourth nodes. The first transistor has a first current electrode coupled to the first node, a control electrode coupled to receive a first bias voltage, and a second current electrode. The second transistor has a first current electrode coupled to the second current electrode of the first transistor, a second current electrode coupled to the third node, and a control electrode coupled to receive a second bias voltage. The third transistor has a first current electrode coupled to the second node, a control electrode coupled to receive the first bias voltage, and a second current electrode. The fourth transistor has a first current electrode coupled to the second current electrode of the third transistor, a control electrode coupled to receive the second bias voltage, and a second current electrode coupled to the fourth node.