Abstract:
In a scanning electron beam CT system, the electron beam is focused by controlling the distribution of beam-generated ions electrostatically. The upstream (self-expanding, de-focusing) beam region and downstream (converging, self-focusing) beam region are distinguished by the absence or presence of beam-generated positive ions. The relative lengths of these two beam regions are electrostatically controlled such that beam de-focusing in the upstream region compensates for beam self-focusing in the downstream region. In this fashion, essentially zero external focusing strength is required, and the magnetic focus coil used in the prior art is eliminated. Located downstream from the electron gun, a positive ion electrode ("PIE") determines the position of the boundary between the two regions, and thus the relative length of each region. The PIE is a disk-like electrode, mounted coaxially to the beam optic axis within the drift tube, and coupled to a large positive potential. Varying the PIE potential varies the inter-region boundary position, and thus the relative magnitudes of the beam de-focusing and self-focusing effects. A PIE focus potential is determined by varying the potential while examining the output of electron beam monitors with an oscilloscope. Further, by dynamically varying the PIE potential, the present invention adjusts electron beam focusing, even during a scan. Positive ions are removed from the upstream region by a periodic ion clearing electrode ("PICE") whose high rate of change of axial potential creates alternating axial fields that rapidly sweep away ions.
Abstract:
A scanning electron beam computed tomography scanner is disclosed herein and includes means defining a vacuum chamber, means for producing an electron beam at one location in the chamber and for directing it to a second location therein, a target located at a third position therein of the type which produces X-rays as a result of the impingement thereon by the electron beam, means for focusing the beam onto the target in the form of a beam spot and for scanning the beam spot across the target along a particular scan path in order to produce X-rays, and means for monitoring the profile, position, and orientation of the beam spot at a plurality of locations along the scan path. The specific scanner disclosed also includes an arrangement for determining from the signals produced by the monitoring devices if the beam spot conforms to as desired profile, position, and orientation and automatically adjusting the electron beam such that its profile, position, and orientation conform to desired values.
Abstract:
X-ray tube includes a rotatable envelope in which is mounted an electron gun at one end and a target anode at the other end. A fixed means for deflecting the electron beam from the electron gun is provided to deflect the electron beam on a fixed path as the envelope of the x-ray tube rotates about an axis. The electron beam being confined to a fixed path results in the electron beam striking various positions of the target anode to provide for improved heat dissipation. The electron beam is deflected along the fixed path using magnetic deflection means including magnetic deflection coils positioned external of the envelope to provide a deflection field transverse to the electron beam. The target anode is cooled by directing a cooling fluid on an external side of the target anode.
Abstract:
A scanning beam computed tomography scanner is disclosed herein and includes means defining a vacuum chamber, means for producing an electron beam at one location in the chamber and for directing it to a second location therein, a target of the type which produces X-rays as a result of the impingement thereon by the electron beam, and means for focusing the beam onto the target in the form of a beam spot and for scanning the beam spot across the target along a particular scan path in order to produce X-rays. The specific scanner disclosed also includes an arrangement for monitoring the profile, position and orientation of the beam spot at a plurality of different points along the scan path.
Abstract:
An electron beam production and control assembly especially suitable for use in producing X-rays in a computed tomography (CT) X-ray scanning system is disclosed herein along with its method of operation. This assembly produces its electron beam within a vacuum-sealed housing chamber which is evacuated of internal gases, except inevitably for small amounts of residual gas. The electron beam is produced by suitable means within the chamber and directed along a path therethrough from the chamber's rearwardmost end to its forwardmost end whereby to impinge on a suitable target for producing the necessary X-rays. Since there is residual gas within the chamber, the electrons of the beam will interact with it and thereby produce positive ions which have the effect of neutralizing the space charge of the electron beam. However, there are a number of different arrangements disclosed herein which form part of the overall assembly for acting on these ions and reducing the neutralizing effect they would otherwise have on the beam.
Abstract:
An electron beam production and control assembly includes a vacuum chamber, a beam source, and a target. The target has an active section and an inactive section. The active section is adapted to generate x-rays when the beam impinges on the x-ray producing section. The electron beam production and control assembly also includes a focusing unit positioned along the chamber at a location intermediate the rearward end and the forward end. The focusing unit directs the beam towards the target in a converging manner to impinge on the target. The focusing unit sweeps the beam along a scanning path over the active section of the target. The focusing unit moves the beam to a retrace path on the inactive section of the target between sweeps of the scanning path to maintain ion accumulation in the beam between sweeps over the active section.
Abstract:
An electron beam production and control assembly includes a vacuum chamber, a beam source, and a target. The target has an active section and an inactive section. The active section is adapted to generate x-rays when the beam impinges on the x-ray producing section. The electron beam production and control assembly also includes a focusing unit positioned along the chamber at a location intermediate the rearward end and the forward end. The focusing unit directs the beam towards the target in a converging manner to impinge on the target. The focusing unit sweeps the beam along a scanning path over the active section of the target. The focusing unit moves the beam to a retrace path on the inactive section of the target between sweeps of the scanning path to maintain ion accumulation in the beam between sweeps over the active section.
Abstract:
In a scanning electron beam CT system, spherical aberration of the electron self-forces produces a deleterious halo around the final electron beam spot, causing loss of definition in the image rendered by the system. The spherical aberration is caused by non-uniform electron beam current density, and by non-uniform distribution of positive ions in the transition region of the beam-optical systems. The non-uniform electron beam current density depends upon the axial position of the electron gun cathode, while the transition region ion distribution depends upon the potential coupled to the washer-shaped positive ion electrode ("PIE") used to segregate the upstream and downstream portions of the electron beam. In the present invention, the beam spot halo is minimized (if not eliminated), and image definition is maximized by selecting the electron gun cathode axial position and the PIE potential such that their contributions to spherical aberrations at the final beam spot cancel.
Abstract:
An electron beam scanning system producing an electron beam in a relatively short chamber includes an ion controlling electrode assembly located between the electron gun and system beam optics. The assembly includes a somewhat cone-shaped rotating field ion controlling electrode ("RICE") unit disposed between first and second ion controlling electrode units ("ICE"s). The RICE and ICEs each comprise element pairs symmetrically disposed on opposite sides of the chamber Z-axis, preferably forming regular polygons in cross-section. Preferably corresponding elements in each ICE are electrically coupled to each other and to an opposite element in the RICE. Preferably equal and opposite bias potentials, with respect to an average potential, are coupled to the RICE and ICE elements comprising an element pair. Because it is somewhat cone-shaped, the RICE and electron beam create a transverse electric field with no axial component. Varying the bias potentials rotates the RICE electric field to controllably remove most but not all positive ions. The remaining ions improve the electron beam space-charge density, resulting in a sharply focused scanning electron beam. The ICE units sweep away positive ions in regions within the overall assembly not otherwise acted upon by fields. A single power source provides multiple potentials via a voltage divider, which potentials are switchably coupled to the RICE and ICE units to provide the required element potentials that may be controllably switched to rotate the resultant electric field in a predictable manner. The complete electrode assembly neither displaces nor deflects the emergent electron beam from the Z-axis.
Abstract:
A rotating x-ray tube includes an electron-beam accelerator assembly having an indirectly heated cathode structure. The cathode structure includes an electron-emitting region mounted at the center of a rotationally symmetric Pierce-cathode configuration. An electron beam travels along a selected path as the tube rotates so that the electron beam strikes selected portions of a target mounted within the tube as it rotates. Two magnetic coils and a ferromagnetic mirror plate are arranged to function as a single quadrupole electromagnet, which has its axis parallel to and offset from the electron beam and which elongates the electron beam in a radial direction.