摘要:
Systems and methods for the design and fabrication of OLEDs, including high-performance large-area OLEDs, are provided. Variously described fabrication processes may be used to deposit and pattern bus lines and/or insulators using vapor deposition such as vacuum thermal evaporation (VTE) through a shadow mask, and may avoid multiple photolithography steps. Bus lines and/or insulators may be formed with a smooth profile and a gradual sidewall transition. Such smooth profiles may, for example, reduce the probability of electrical shorting at the bus lines. Other vapor deposition systems and methods may include, among others, sputter deposition, e-beam evaporation and chemical vapor deposition (CVD). A final profile of the bus line and/or insulator may substantially correspond to the profile as deposited. A single OILED devices may also be formed with relatively large dimension.
摘要:
Systems and methods for the design and fabrication of OLEDs, including high-performance large-area OLEDs, are provided. Variously described fabrication processes may be used to deposit and pattern bus lines and/or insulators using vapor deposition such as vacuum thermal evaporation (YTE) through a shadow mask, and may avoid multiple photolithography steps. Bus lines and/or insulators may be formed with a smooth profile and a gradual sidewall transition. Such smooth profiles may, for example, reduce the probability of electrical shorting at the bus lines. Other vapor deposition systems and methods may include, among others, sputter deposition, e-beam evaporation and chemical vapor deposition (CVD). A final profile of the bus line and/or insulator may substantially correspond to the profile as deposited. A single OILED devices may also be formed with relatively large dimension.
摘要:
Embodiments described herein may provide for devices comprising a digitized OLED light source (900) and/or methods of manufacturing such devices. In some embodiments, a first method may be provided. The first method may include the steps of depositing a first conductive layer (902) over a substrate (901), depositing a first organic layer (904) comprising electroluminescent material over the first conductive layer, and depositing a first patterned image layer (903) over some but not all of the first conductive layer. The first patterned image layer may locally alter the emissive properties of the first organic layer, and the shape of the first patterned image layer may be based on a non-uniform visual image. The first method may further comprise the step of depositing a second conductive layer (905) over the first organic layer.
摘要:
Embodiments may provide a light source with a controlled brightness variation. A first device is provided that includes a substrate and a plurality of OLEDs disposed on the substrate. Each of the OLEDs includes a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The plurality of OLEDs comprise a first group and a second group where a first current density is supplied to the first group of the plurality of OLEDs and a second current density that is different from the first current density is supplied to the second group of the plurality of OLEDs. Each of the plurality of OLEDs is commonly addressable and at least one of the OLEDs in the first group of OLEDs has substantially the same device structure as at least one of the OLEDs in the second group of OLEDs.
摘要:
Embodiments described herein may provide for devices comprising a digitized OLED light source (900) and/or methods of manufacturing such devices. In some embodiments, a first method may be provided. The first method may include the steps of depositing a first conductive layer (902) over a substrate (901), depositing a first organic layer (904) comprising electroluminescent material over the first conductive layer, and depositing a first patterned image layer (903) over some but not all of the first conductive layer. The first patterned image layer may locally alter the emissive properties of the first organic layer, and the shape of the first patterned image layer may be based on a non-uniform visual image. The first method may further comprise the step of depositing a second conductive layer (905) over the first organic layer.
摘要:
Embodiments may provide a light source with a controlled brightness variation. A first device is provided that includes a substrate and a plurality of OLEDs disposed on the substrate. Each of the OLEDs includes a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The plurality of OLEDs comprise a first group and a second group where a first current density is supplied to the first group of the plurality of OLEDs and a second current density that is different from the first current density is supplied to the second group of the plurality of OLEDs. Each of the plurality of OLEDs is commonly addressable and at least one of the OLEDs in the first group of OLEDs has substantially the same device structure as at least one of the OLEDs in the second group of OLEDs.
摘要:
A light emitting device with high light emission uniformity is disclosed. The device contains a first electrically conductive layer having a positive polarity and an electrically conductive uniformity enhancement layer in contact with the first electrically conductive layer. The device also contains a second electrically conductive layer having a negative polarity and a light-emitting structure situated between the first and the second electrically conductive layers. The light-emitting structure contains an organic material in direct contact with the second electrically conductive layer. The uniformity enhancement layer transmits essentially all wavelengths of light emitted by the light-emitting structure. Compared to devices lacking a uniformity enhancement layer, the device exhibits higher spatial uniformity in luminance and in color spectrum.
摘要:
A permeation barrier film structure for organic electronic devices includes one or more bilayers having a hybrid permeation barrier composition. Each of the one or more bilayers includes a first region having a first composition corresponding to a first CF4—O2 Plasma Reactive Ion Etch Rate and a second region having a second composition corresponding to a second CF4—O2 Plasma Reactive Ion Etch Rate, wherein the second Etch Rate is greater than the first Etch Rate by a factor greater than 1.2 and the hybrid permeation barrier film is a homogeneous mixture of a polymeric material and a non-polymeric material, wherein the mixture is created from a single precursor material.
摘要:
A method for protecting an electronic device comprising an organic device body. The method involves the use of a hybrid layer deposited by chemical vapor deposition. The hybrid layer comprises a mixture of a polymeric material and a non-polymeric material, wherein the weight ratio of polymeric to non-polymeric material is in the range of 95:5 to 5:95, and wherein the polymeric material and the non-polymeric material are created from the same source of precursor material. Also disclosed are techniques for impeding the lateral diffusion of environmental contaminants.
摘要:
A method of preparing a surface for deposition of a thin film thereon, wherein the surface including a plurality of protrusions extending therefrom and having shadowed regions, includes locally treating at least one of the protrusions.