Abstract:
A throttle valve and a throttle shaft are welded to each other. Here, the throttle valve is made of resin material having a transmission property for a laser beam and includes a convex portion on a surface thereof irradiated by the laser beam. By contrast, the throttle shaft is made of resin material having a absorption property for a laser beam. The throttle valve and the throttle shaft are disposed so that their mutual portions to be welded face each other. Laser beams are radiated from the surface of the throttle valve to the mutual portions to be welded so that the convex portion is included in a part of an irradiated region.
Abstract:
An intake system for an engine includes a duct defining an intake passage therein, and a cantilevered valve including a valve main body opening/closing the intake passage, a shaft supporting the body, and a valve extension portion. The duct includes a reduced passage portion between the duct and the body when the body is in a fully closed position, a recess accommodating the body and the extension portion when the body is fully opened, and a pressure introduction passage formed between the duct and the body when the body is fully closed, and communicating with a space between the body and the extension portion when the body is fully closed. The extension portion includes a sealing part. The duct and the sealing part define a clearance therebetween when the body is fully closed. The clearance has a smaller sectional area than the reduced passage portion.
Abstract:
An L-shaped rotary valve has a pair of side plates and a valve plate. The rotary valve is rotatably supported in a housing at a shaft 5. The valve plate moves along downstream ends of side wall portions of an air duct. A gap is formed between a downstream end of an air-intake passage and the valve plate, when the rotary valve is moved to its valve closed position. The side plates of the rotary valve cover the gap in a lateral direction in parallel to an axial direction of the shaft, so that leakage of air flow in the lateral direction of the gap is suppressed.
Abstract:
An inner ring of a bearing is fixed to an outer periphery of a central portion of a shaft between a pair of facing sections. An outer ring of the bearing is fixed to a hole wall surface of a shaft accommodation recess. A spring is accommodated between one of the pair of facing sections and the bearing in a state where the spring is compressed in a rotational axis direction of a pin rod for pressing the bearing against the other one of the pair of facing sections. Thus, defects such as galling or friction between a casing and rotary valves can be inhibited. Accordingly, occurrence of wear or an abnormal noise between the casing and the rotary valves can be inhibited.
Abstract:
A rotation angle detecting device includes a magnet (4), a magnetic substance unit (5), and a non-contact magnetic detection element (7). The magnet (4) rotates with an object to be measured and includes two ends magnetized so as to have opposite polarities. The magnetic substance unit (5) forms a predetermined air gap with the two ends of the magnet (4) and is divided into magnetic members (6) so as to provide plane symmetry with respect to a vertical plane perpendicularly crossing a rotational center axis of the magnet (4) to form a magnetic detection gap (9) by the division. The non-contact magnetic detection element (7) is provided in the magnetic detection gap (9) between the magnetic members (6) so as to output a signal corresponding to a density of a magnetic flux passing through the magnetic detection gap (9). The rotation angle of the object to be measured is detected based on the output signal from the magnetic detection element (7). The magnetic members (6) include reverse warp parts (34) so that the air gap suddenly increases when the magnet (4) rotates at a predetermined rotation angle from a state where the air gap is minimum in a direction in which the air gap increases.
Abstract:
An air intake device for an engine includes a duct having therein a first air flow passage, a housing having therein a second air flow passage, a rotary valve having a valve plate. A block of the housing, which conducts intake air to an intake port of a cylinder head, has a circular opposed surface that follows a shape of a curved surface portion of the valve plate. Moreover, the block of the housing has a protrusion that protrudes toward an upstream side of the second air flow passage in an air flow direction so as to contact a duct protrusion of the duct. Therefore, a localized flow of the intake air, which has flowed into the second air flow passage from an opening of the first air flow passage, can be restrained from spreading, and a flow rate of the localized flow can be restrained from slowing down.
Abstract:
An inner ring of a bearing is fixed to an outer periphery of a central portion of a shaft between a pair of facing sections. An outer ring of the bearing is fixed to a hole wall surface of a shaft accommodation recess. A spring is accommodated between one of the pair of facing sections and the bearing in a state where the spring is compressed in a rotational axis direction of a pin rod for pressing the bearing against the other one of the pair of facing sections. Thus, defects such as galling or friction between a casing and rotary valves can be inhibited. Accordingly, occurrence of wear or an abnormal noise between the casing and the rotary valves can be inhibited.
Abstract:
An intake control device for an internal combustion engine includes an intake air induction duct, a housing, a valve, and a gasket. The housing is received in a receiving chamber of the intake air induction duct. The valve is received in the housing for opening and closing an intake passage defined in the housing. The gasket is mounted on one of (a) a position between the intake air induction duct and the attachment surface, and (b) a position between the housing and a wall surface of the receiving chamber. The housing opposes the attachment surface and is spaced from the attachment surface by a predetermined clearance. The gasket has an elastic deformation portion that is positioned between the housing and the attachment surface.
Abstract:
A passage intake control device includes a passage member, a valve disposed in the passage member and a shaft passing through a through hole of a valve shaft part of the valve. The valve shaft part includes a fitting hole portion as a part of the through hole. The fitting hole portion is provided by at least a first wall, a second wall, a third wall and a fourth wall. The shaft includes a fitting part having a polygonal shape including at least a first shaft surface a second shaft surface, a third shaft surface and a fourth shaft surface. The fitting part is fitted in the fitting hole portion such that the first to fourth shaft surfaces are opposed to the first to fourth walls of the fitting hole portion, respectively. The first and second walls have protruded ribs. The third and fourth walls include flat portions.
Abstract:
An air intake device for an engine includes a duct having therein a first air flow passage, a housing having therein a second air flow passage, a rotary valve having a valve plate. A block of the housing, which conducts intake air to an intake port of a cylinder head, has a circular opposed surface that follows a shape of a curved surface portion of the valve plate. Moreover, the block of the housing has a protrusion that protrudes toward an upstream side of the second air flow passage in an air flow direction so as to contact a duct protrusion of the duct. Therefore, a localized flow of the intake air, which has flowed into the second air flow passage from an opening of the first air flow passage, can be restrained from spreading, and a flow rate of the localized flow can be restrained from slowing down.