Abstract:
An image sensor includes: a semiconductor substrate that has a first surface and a second surface opposite to each other. The semiconductor substrate includes: a first trench that vertically extends from the first surface of the semiconductor substrate and provides a pixel region, and a second trench that vertically extends from the first surface of the semiconductor substrate and is disposed on the pixel region. The image sensor further includes: a pixel separation structure that vertically extends from the second surface of the semiconductor substrate and overlaps the first trench; and a gap-fill dielectric layer disposed on the first surface of the semiconductor substrate, wherein the gap-fill dielectric layer includes a pixel separation part and a scattering pattern part, wherein the pixel separation part is disposed in the first trench, and the scattering pattern part is disposed in the second trench.
Abstract:
Provided is an image sensor including a first layer including a first semiconductor substrate including a pixel unit in which a plurality of unit pixels are provided, and a first wiring layer provided on the first semiconductor substrate, a second layer including a second semiconductor substrate on which a plurality of transistors configured to operate a global shutter operation are provided, and a second wiring layer provided on the second semiconductor substrate, and provided on the first layer such that the first wiring layer and the second wiring layer oppose each other in a first direction, a plurality of first bonding structures bonding the first layer to the second layer based on a first bonding metal exposed on a surface of the first wiring layer being in contact with a second bonding metal exposed on a surface of the second wiring layer, a third layer including a third semiconductor substrate on which a logic circuit is provided, and a third wiring layer provided on the third semiconductor substrate, and bonded to the second layer such that the second semiconductor substrate and the third wiring layer oppose each other in the first direction, and a plurality of second bonding structures extending from the second wiring layer, and bonding the second layer to the third layer based on a bonding via penetrating the second semiconductor substrate being in contact with a third bonding metal exposed to a surface of the third wiring layer.
Abstract:
An image sensor includes a substrate having adjacent pixel regions and respective photodiode regions therein, and a pixel separation portion including a trench extending into the substrate between the adjacent pixel regions. The trench includes a conductive common bias line therein and an insulating device isolation layer between the common bias line and surfaces of the trench. A conductive interconnection is coupled to the common bias line and is configured to provide a negative voltage thereto. Related fabrication methods are also discussed.
Abstract:
Optical sensors including a light-impeding pattern are provided. The optical sensors may include a plurality of photoelectric conversion regions, a plurality of lenses on the plurality of photoelectric conversion regions, and a light-impeding layer extending between the plurality of photoelectric conversion regions and the plurality of lenses. The light-impeding layer may include an opening between a first one of the plurality of photoelectric conversion regions and a first one of the plurality of lenses. The optical sensors may be configured to be assembled with a display panel such that the plurality of lenses are disposed between the light-impeding layer and the display panel.
Abstract:
A first substrate includes a plurality of unit pixel regions. A deep trench isolation structure is disposed in the first substrate and isolates each of the plurality of the unit pixel regions from each other. Each of a plurality of photoelectric converters is disposed in one of the plurality of unit pixel regions. A plurality of micro lenses are disposed on the first substrate. A plurality of light splitters are disposed on the first substrate. Each of the plurality of light splitters is disposed between one of the plurality of micro lenses and one of the plurality of photoelectric converters. Each of a plurality of photoelectric-conversion-enhancing layers is disposed between one of the plurality of light splitters and one of the plurality of photoelectric converters.
Abstract:
An image sensor includes a substrate having adjacent pixel regions and respective photodiode regions therein, and a pixel separation portion including a trench extending into the substrate between the adjacent pixel regions. The trench includes a conductive common bias line therein and an insulating device isolation layer between the common bias line and surfaces of the trench. A conductive interconnection is coupled to the common bias line and is configured to provide a negative voltage thereto. Related fabrication methods are also discussed.
Abstract:
An image sensor includes a substrate having adjacent pixel regions and respective photodiode regions therein, and a pixel separation portion including a trench extending into the substrate between the adjacent pixel regions. The trench includes a conductive common bias line therein and an insulating device isolation layer between the common bias line and surfaces of the trench. A conductive interconnection is coupled to the common bias line and is configured to provide a negative voltage thereto. Related fabrication methods are also discussed.
Abstract:
The inventive concept provides image sensors and methods of forming the same. In the image sensor, a surface trap region may be disposed to be adjacent to a surface of a substrate lens component. Thus, a dark current characteristic may be improved.