Abstract:
An X-ray imaging apparatus automatically distinguishes between right and left breasts during mammography. The X-ray imaging apparatus includes: an X-ray assembly configured to press a breast, irradiate X-rays onto the pressed breast, and detect X-rays transmitted through the breast; two handles respectively provided in both sides of the X-ray assembly so that a patient is able to grip the handles, each handle including a sensor for detecting the patient's grip; and a controller configured to determine a position of a handle including the sensor that has detected the patient's grip, and to determine that a breast subject to mammography is a breast corresponding to the determined position.
Abstract:
Provided is an X-ray imaging apparatus including an X-ray source to emit an X-ray onto a breast, a detector assembly configured to detect the X-ray transmitted through the breast, a compression paddle configured to compress the breast positioned on the detector assembly, a paddle manipulator configured to control the compression paddle according to a command, a degree-of-compression sensor configured to measure a degree of compression to which the breast is compressed by the compression paddle, and a pressure controller configured to supply a pressure corresponding to the measured degree of compression of the breast to the paddle manipulator.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and radiate X-rays to a subject, an X-ray detector configured to detect and convert X-rays transmitted through the subject into an image signal, and a controller configured to analyze the image signal of the subject and set gain of the X-ray detector according to detection regions.
Abstract:
Disclosed herein is an X-ray imaging apparatus. The X-ray imaging apparatus includes at least one X-ray emitter which is configured to irradiate an object with X-rays at a plurality of X-ray emission positions, an X-ray detector which is configured to detect X-rays which are emitted by the X-ray emitter and to convert the detected X-rays into an electric signal, and an image processor which is configured to acquire a plurality of original X-ray images which respectively correspond to the X-ray emission positions from the generated electric signal and to estimate a virtual X-ray image which is acquirable at an X-ray emission position located between at least two of the plurality of X-ray emission positions, based on at least two of the original X-ray images.
Abstract:
The X-ray imaging method includes setting imaging conditions according to characteristics of an object and performing X-ray imaging of the object based on the set imaging conditions. The imaging conditions include at least one of an imaging angle, a number of imaging operations, and an imaging position.
Abstract:
Disclosed is an X-ray imaging apparatus, which includes a plurality of X-ray generation modules configured to emit X-rays to a subject, the X-ray generation modules being configured to move independently of one another, an X-ray detector configured to detect a plurality of X-rays emitted from the plurality of X-ray generation modules and which have passed through the subject, and an image processor configured to acquire a plurality of X-ray images from the plurality of detected X-rays.
Abstract:
Provided are a method and apparatus for interpolating X-ray tomographic image data by using a machine learning model. A method of interpolating an X-ray tomographic image or X-ray tomographic composite image data includes obtaining a trained model parameter via machine learning that uses a sub-sampled sinogram for learning as an input and uses a full-sampled sinogram for learning as a ground truth; radiating X-rays onto an object at a plurality of preset angular locations via an X-ray source, and obtaining a sparsely-sampled sinogram including X-ray projection data obtained via X-rays detected at the plurality of preset angular locations; applying the trained model parameter to the sparsely-sampled sinogram by using the machine learning model; and generating a densely-sampled sinogram by estimating X-ray projection data not obtained with respect to the object on the sparsely-sampled sinogram.
Abstract:
The X-ray imaging apparatus includes an X-ray source that emits X-rays to an object at different original-view positions, an X-ray detector that acquires original-view images by detecting X-rays having passed through the object, and an image controller that reconstructs a 3D volume image representation of the object from the original-view images and generates close-view images by virtually emitting X-rays to the 3D volume image representation of the object at a shorter distance than a distance between the X-ray source and the object.
Abstract:
Disclosed herein is a method for reconstructing an X-ray image, including selecting an initial value of a reconstruction value of an internal tissue of a target object, inserting the reconstruction value into a first relationship function to calculate simulation data of measurement data which is detected from X-rays which have passed through the target object, inserting the detected measurement data and the calculated simulation data into a first expression and a second expression for respectively determining a first constant and second constant as coefficients of a second relationship function of a relationship between the measurement data and the simulation data, in order to calculate the first constant and the second constant, and inserting the first constant and the second constant into a third relationship function which relates to the first constant and second constant and the reconstruction value in order to update the reconstruction value.
Abstract:
Provided is an apparatus and method for generating a virtual view in an image reconstruction system which uses multiple views. In the image reconstruction system which uses multiple views, the virtual view generating apparatus may receive original view projection images that are generated by emitting X rays toward an object via original views, three-dimensionally reconstruct the object by using the original view projection images, generate original view reprojection images by virtually emitting X-rays toward the reconstructed 3D object via the original views, estimate a motion of the reconstructed 3D object with respect to at least two of the original view reprojection images using a block-based motion estimation scheme, and generate an intermediate view projection image with respect to the at least two of the original view reprojection images by using information relating to the estimated motion.