Abstract:
An integrated circuit device includes a substrate having an active region and a word line trench therein. The word line trench includes a lower portion having a first width, and an upper portion, which extends between the lower portion and a surface of the substrate. A word line is provided, which extends in and adjacent a bottom of the word line trench. A gate insulation layer is provided, which extends between the word line and sidewalls of the lower portion of the word line trench. An electrically insulating gate capping layer is provided in the upper portion of the word line trench. An insulation liner is provided, which extends between the gate capping layer and sidewalls of the upper portion of the word line trench. The gate insulation layer extends between the insulation liner and a portion of the gate capping layer.
Abstract:
A semiconductor memory device includes a substrate comprising a memory cell region and a dummy cell region surrounding the memory cell region, the memory cell region including a plurality of memory cells, a plurality of active regions in the memory cell region, each of the plurality of active regions extending in a long axis direction, the long axis direction being a diagonal direction with respect to a first horizontal direction and a second horizontal direction orthogonal to the first horizontal direction, each of the plurality of active regions having a first width in a short axis direction orthogonal to the long axis direction, and a plurality of dummy active regions in the dummy cell region, each extending in the long axis direction, each of the plurality of dummy active regions having a second width greater than the first width in the short axis direction.
Abstract:
The semiconductor device provided comprises a substrate that includes active regions that extends in a first direction and a device isolation layer that defines the active regions, word lines that run across the active regions in a second direction that intersects the first direction, bit-line structures that intersect the active regions and the word lines and that extend in a third direction that is perpendicular to the second direction, first contacts between the bit-line structures and the active regions, spacer structures on sidewalls of the bit-line structures, and second contacts that are between adjacent bit-line structures and are connected to the active regions. Each of the spacer structures extends from the sidewalls of the bit-line structures onto a sidewall of the device isolation layer.
Abstract:
The semiconductor device provided comprises a substrate that includes active regions that extends in a first direction and a device isolation layer that defines the active regions, word lines that run across the active regions in a second direction that intersects the first direction, bit-line structures that intersect the active regions and the word lines and that extend in a third direction that is perpendicular to the second direction, first contacts between the bit-line structures and the active regions, spacer structures on sidewalls of the bit-line structures, and second contacts that are between adjacent bit-line structures and are connected to the active regions. Each of the spacer structures extends from the sidewalls of the bit-line structures onto a sidewall of the device isolation layer.
Abstract:
A semiconductor device includes a substrate including an active region, a first bitline structure and a second bitline structure that extend side by side on the substrate, a storage node contact electrically connected to the active region between the first and second bitline structures, a lower landing pad between the first and second bitline structures and on the storage node contact, an upper landing pad in contact with the first bitline structure and electrically connected to the lower landing pad, and a capping insulating layer. A lower surface of the upper landing pad in contact with the first bitline structure and a lower surface of the capping insulating layer in contact with the lower landing pad each include a portion in which a horizontal separation distance is increased from the adjacent upper landing pad in a direction toward the substrate.
Abstract:
A semiconductor device comprises a substrate including a cell array region and a peripheral circuit region that surrounds the cell array region. The cell array region includes landing pads disposed on the substrate and first bottom electrodes disposed on and connected to corresponding landing pads. The peripheral circuit region includes conductive lines disposed on the substrate, a first conductive pad disposed on and spaced apart from the conductive lines, a dielectric pattern disposed between the conductive lines and the first conductive pad, and a plurality of second bottom electrodes disposed on and connected in common to the first conductive pad. A height of each of the first bottom electrodes is greater than a height of each of the second bottom electrodes. Top surfaces of the first bottom electrodes are located at a same level as a level of top surfaces of the second bottom electrodes.
Abstract:
A semiconductor memory device is provided. The device includes a substrate including a cell region and a peripheral region; a plurality of lower electrodes disposed on the substrate in the cell region; a dielectric layer disposed on the plurality of lower electrodes; a metal containing layer disposed on the dielectric layer; a silicon germanium layer disposed on and electrically connected to the metal containing layer; a conductive pad disposed on and electrically connected to the silicon germanium layer; and an upper electrode contact plug disposed on and electrically connected to the conductive pad; The conductive pad extends from the upper electrode contact plug towards the peripheral region in a first direction, and the silicon germanium layer includes an edge portion that extends past the conductive pad in the first direction.
Abstract:
The semiconductor device provided comprises a substrate that includes active regions that extends in a first direction and a device isolation layer that defines the active regions, word lines that run across the active regions in a second direction that intersects the first direction, bit-line structures that intersect the active regions and the word lines and that extend in a third direction that is perpendicular to the second direction, first contacts between the bit-line structures and the active regions, spacer structures on sidewalls of the bit-line structures, and second contacts that are between adjacent bit-line structures and are connected to the active regions. Each of the spacer structures extends from the sidewalls of the bit-line structures onto a sidewall of the device isolation layer.
Abstract:
A method of fabricating a semiconductor device includes sequentially forming a first insulation pattern and an etch stop pattern on a peripheral circuit area of a substrate, forming a first mask pattern on a cell array area of the substrate, the first mask pattern including a pair of first portions extending in parallel and a second portion covering a portion of a sidewall of the etch stop pattern and a portion of a sidewall of the first insulation pattern, forming a second insulation layer covering the etch stop pattern and the first mask pattern, partially etching the etch stop pattern and the second insulation layer to expose the second portion of the first mask pattern, and removing the second portion of the first mask pattern to divide the pair of first portions of the first mask pattern.
Abstract:
A semiconductor device includes a first device isolation region and a second device isolation region defining a first active region, a second active region, and a third active region in a substrate, a recess region exposing an upper surface of the first active region and upper surfaces of the first and second device isolation regions, and active buffer patterns on the second and third active regions. The first active region is located between the second and third active regions, the first device isolation region is located between the first and second active regions, the second device isolation region is located between the first and third active regions. Upper sidewalls of the second and third active regions are exposed in the recess region.