Abstract:
A driving device is used in an image reading apparatus, and reciprocates a scanning unit for reading an image on an original. The driving device comprises a pull member, a driving pulley which transmits driving force to the pull member, a following pulley which applies tension to the pull member and a pulley holder having a pulley axis which holds the following pulley rotatably. Then, the pulley axis has a lock pawl capable of locking an upper end portion of the following pulley and canceling engagement with the following pulley by being tilted toward a side of an axial center by elastic deformation. Furthermore, the lock pawl is arranged at a side of a tension acting direction from the pull member to the following pulley except the farthest position from the driving pulley among positions in a circumferential direction of the pulley axis. It is possible to attach and detach the following pulley easily at a time of maintenance or the like.
Abstract:
An illuminating device capable of stably illuminating an irradiated object such as a document while suppressing light loss with a simply structure is provided.An LED array and a reflective plate are disposed sandwiching a slit (St) through which light reflected by a document MS passes and a light-guiding member is disposed on the side of the LED array. The light-guiding member includes a direct emission unit disposed between an illumination range y centered on a document reading position and the LED array and an indirect emission unit disposed between the reflective plate and the LED array, a light incidence face of the direct emission unit and a light incidence face of the indirect emission unit are disposed at mutually different position around the LED array, and the LED array is disposed on a side of an interior angle formed by the light incidence faces.
Abstract:
An image reader is provided, in its housing, with a first scanning unit made up of an LED array of a plurality of LED elements that are arranged in a row in the horizontal scanning direction and that emit light to a document. An air intake port and an air exhaust port are disposed on the housing of the image reader. An imaginary line of an air flow path coupling the air intake port and the air exhaust port to one another is configured to pass adjacent a center of the LED array of the first scanning unit in the horizontal scanning direction with the first scanning unit stopped at a reading position of the document transferred by a document transfer device.
Abstract:
An image forming apparatus includes an image reading unit, an image forming unit, a discharge unit, and a discharge tray. The image reading unit is configured to read a document placed on a document placement table by moving and scanning of a scanning body in a sub-scanning direction. The image forming unit is configured to form an image read by the image reading unit on a paper sheet. The discharge unit is configured to discharge the paper sheet on which an image is formed by the image forming unit to a direction perpendicular to the sub-scanning direction. The discharge tray is on which the paper sheet from the discharge unit is to be placed with a space portion at a lower side of the image reading unit. A bottom surface of a housing of the image reading unit facing the discharge tray is constituted of a first surface and a second surface. The first surface is a surface at a front side of the discharge unit in a discharging direction and high with respect to the discharge tray. The second surface is a surface at a back side of the discharge unit in the discharging direction lower than the first surface with respect to the discharge tray. A pulling member and/or a movable wiring are/is arranged at an upper side of the second surface inside the housing. The pulling member is configured to move the scanning body back and forth in the sub-scanning direction. One end portion of the movable wiring is secured to the scanning body.
Abstract:
A sheet feed apparatus includes a sheet separation unit, and the sheet separation unit includes a separation roller that is provided so as to be brought into contact to an outer peripheral surface of a sheet feed roller, and separates a sheet fed by the sheet feed roller into one. The sheet separation unit comprises a hook for rotatably supporting the sheet separation unit in a main body casing of the sheet feed apparatus and an engaging claw that makes the sheet separation unit engage with the main body casing. Therefore, the sheet separation unit is held in the main body casing detachably.
Abstract:
An image reading apparatus has a light source unit for illuminating an object to be illuminated, a reading unit for reading the object illuminated by the light source unit, a reflective unit, having at least a first reflection mirror, for reflecting reading light reflected by the object toward the reading unit, and a first light blocking portion for partially blocking light except the reading light. The first reflection mirror has a reflecting surface for reflecting the reading light, and an end surface substantially orthogonal to the reflecting surface. The first light blocking portion extends in a longitudinal direction of the first reflection mirror toward the end surface of the first reflection mirror, with a tip end of the first light blocking portion being opposed to the end surface of the first reflection mirror with a gap therebetween.
Abstract:
An image forming apparatus includes an image reading unit, an image forming unit, a discharge unit, and a discharge tray. The image reading unit is configured to read a document placed on a document placement table by moving and scanning of a scanning body in a sub-scanning direction. The image forming unit is configured to form an image read by the image reading unit on a paper sheet. The discharge unit is configured to discharge the paper sheet on which an image is formed by the image forming unit to a direction perpendicular to the sub-scanning direction. The discharge tray is on which the paper sheet from the discharge unit is to be placed with a space portion at a lower side of the image reading unit. A bottom surface of a housing of the image reading unit facing the discharge tray is constituted of a first surface and a second surface. The first surface is a surface at a front side of the discharge unit in a discharging direction and high with respect to the discharge tray. The second surface is a surface at a back side of the discharge unit in the discharging direction lower than the first surface with respect to the discharge tray. A pulling member and/or a movable wiring are/is arranged at an upper side of the second surface inside the housing. The pulling member is configured to move the scanning body back and forth in the sub-scanning direction. One end portion of the movable wiring is secured to the scanning body.
Abstract:
A light guiding body includes a long translucent body, a light incident surface formed at an end of the body in a longitudinal direction of the body, a light emitting surface formed on one side surface of the body along the longitudinal direction of the body, and a light emitting quantity adjusting portion formed on the other side surface of the body along the longitudinal direction of the body so as to be opposite to the light emitting surface. The light guiding body guides, in the body, light incident to the light incident surface, reflects the light by the light emitting quantity adjusting portion, and emits the light from the light emitting surface. A width of the light emitting quantity adjusting portion of the body in a direction perpendicular to the longitudinal direction of the body is varied according to a position in the width in the longitudinal direction.
Abstract:
An image reading device includes a housing with a document platen provided on an upper surface of the housing, a scanning body provided to be reciprocally movable in the housing, and a flat cable having one end connected with an image reader of the scanning body. The flat cable includes a follow-up deformed section deformable following a movement of the scanning body, and a bent section bent so that the flat cable is aligned in a main scanning direction. The bent section is arranged on a lower surface of a base of the scanning body, and a holder that holds the bent section is formed on the lower surface of the base.
Abstract:
An image reading device includes an image reader that scans a document so as to read an image of the document. The image reader includes a scanning body in which at least plural mirrors, a condenser lens, and an image sensor are disposed. In the scanning body, concerning positional relationships among the plural mirrors as viewed from a main scanning direction, the plural mirrors are disposed on two sides with respect to an imaginary line extending along an optical axis of reflected light from the document. The mirrors on a corresponding one of the two sides are disposed such that a reflecting position of a mirror on a downstream side in a traveling direction of the reflected light is positioned closer to the document and also to the imaginary line than that of a mirror on an upstream side in the traveling direction of the reflected light.