Abstract:
There is provided an image processing device including a motion vector detection portion that performs comparison of a substantially spherical photographic subject such that, among a plurality of captured images including the photographic subject, an image as a processing target and another image as a comparison target are compared using each of the plurality of captured images as the processing target, and which detects a motion vector of a whole three-dimensional spherical model with respect to the processing target, a motion compensation portion that performs motion compensation on the processing target, based on the motion vector of each of the plurality of captured images that is detected by the motion vector detection portion, and a synthesis portion that synthesizes each of the captured images that are obtained as a result of the motion compensation performed by the motion compensation portion.
Abstract:
There is provided an image processing device including a motion vector detection portion that performs comparison of a substantially spherical photographic subject such that, among a plurality of captured images including the photographic subject, an image as a processing target and another image as a comparison target are compared using each of the plurality of captured images as the processing target, and which detects a motion vector of a whole three-dimensional spherical model with respect to the processing target, a motion compensation portion that performs motion compensation on the processing target, based on the motion vector of each of the plurality of captured images that is detected by the motion vector detection portion, and a synthesis portion that synthesizes each of the captured images that are obtained as a result of the motion compensation performed by the motion compensation portion.
Abstract:
A method of setting a laser-light intensity value includes: emitting laser light, the laser light being excitation light, a fluorescent-dyed biological sample being irradiated with the excitation light and emitting light; detecting fluorescence emitted by the biological sample, and outputting a signal corresponding to a brightness value; prestoring relation information, the relation information including the plurality of laser-light intensity values, and information on at least one possible correlation between a phototoxicity degree and the brightness value in relation to each of the laser-light intensity values, the phototoxicity to the biological sample resulting from the laser light; generating a fluorescence image having the brightness value based on the output signal; calculating a brightness value representative of a ROI area based on the generated fluorescence image; and referring to the relation information, and determining a laser-light intensity value satisfying tolerance of the phototoxicity based on the calculated representative brightness value.
Abstract:
In some embodiments, methods and apparatus are provided for transmitting, via at least one network, a request to another apparatus for still image data generated from moving image data, the request comprising at least one criterion, and receiving still image data generated from moving image data matching the at least one criterion in the request. In further embodiments, methods and apparatus are provided for receiving the request via at least one network, using the at least one criterion in the request to obtain still image data generated from moving image data, and responding to the request by transmitting the obtained still image data.
Abstract:
An information processing apparatus includes: a detecting unit that detects behavior information and biological information of a user as a target; a biological information estimating unit that calculates estimated biological information by applying, to a metabolism model, the behavior information and the biological information detected by the detecting unit; and a suggesting unit that suggests, to the user, a recommended behavior calculated based on the estimated biological information calculated by the biological information estimating unit.
Abstract:
An image processing device and image processing method are provided. A device for controlling display of a sequence of images of living objects obtained through microscopy may comprise a processor and a storage unit. The storage unit may store a program which, when executed by the processor, causes the processor to perform acts. The acts may include acquiring a first sequence of first images of living objects obtained through microscopy. The acts may further include extracting a second sequence of second images from the first sequence of first images, wherein a number of second images in the second sequence is less than a number of first images in the first sequence. The acts may further include controlling a display device to display the second sequence of second images.
Abstract:
In some embodiments, methods and apparatus are provided for transmitting, via at least one network, a request to another apparatus for still image data generated from moving image data, the request comprising at least one criterion, and receiving still image data generated from moving image data matching the at least one criterion in the request. In further embodiments, methods and apparatus are provided for receiving the request via at least one network, using the at least one criterion in the request to obtain still image data generated from moving image data, and responding to the request by transmitting the obtained still image data.
Abstract:
In some embodiments, methods and apparatus are provided for transmitting, via at least one network, a request to another apparatus for still image data generated from moving image data, the request comprising at least one criterion, and receiving still image data generated from moving image data matching the at least one criterion in the request. In further embodiments, methods and apparatus are provided for receiving the request via at least one network, using the at least one criterion in the request to obtain still image data generated from moving image data, and responding to the request by transmitting the obtained still imagedata.
Abstract:
There is provided an image processing device including a motion vector detection portion that performs comparison of a substantially spherical photographic subject such that, among a plurality of captured images including the photographic subject, an image as a processing target and another image as a comparison target are compared using each of the plurality of captured images as the processing target, and which detects a motion vector of a whole three-dimensional spherical model with respect to the processing target, a motion compensation portion that performs motion compensation on the processing target, based on the motion vector of each of the plurality of captured images that is detected by the motion vector detection portion, and a synthesis portion that synthesizes each of the captured images that are obtained as a result of the motion compensation performed by the motion compensation portion.
Abstract:
A method of setting a laser-light intensity value includes: emitting laser light, the laser light being excitation light, a fluorescent-dyed biological sample being irradiated with the excitation light and emitting light; detecting fluorescence emitted by the biological sample, and outputting a signal corresponding to a brightness value; prestoring relation information, the relation information including the plurality of laser-light intensity values, and information on at least one possible correlation between a phototoxicity degree and the brightness value in relation to each of the laser-light intensity values, the phototoxicity to the biological sample resulting from the laser light; generating a fluorescence image having the brightness value based on the output signal; calculating a brightness value representative of a ROI area based on the generated fluorescence image; and referring to the relation information, and determining a laser-light intensity value satisfying tolerance of the phototoxicity based on the calculated representative brightness value.