Abstract:
The object is to provide an information processing apparatus, an information processing method, and a program capable of appropriately handling a difference between detection results of sensors. The solution is an information processing apparatus including: a detection section configured to detect first information regarding a mobile object; an acquisition section configured to acquire second information regarding the mobile object, the second information being detected by an external apparatus; and a control section configured to control processing based on a comparison result of the first information and the second information detected for the same mobile object.
Abstract:
Provided is a robot device including an image input unit for inputting an image of surroundings, a target object detection unit for detecting an object from the input image, an object position detection unit for detecting a position of the object, an environment information acquisition unit for acquiring surrounding environment information of the position of the object, an optimum posture acquisition unit for acquiring an optimum posture corresponding to the surrounding environment information for the object, an object posture detection unit for detecting a current posture of the object from the input image, an object posture comparison unit for comparing the current posture of the object to the optimum posture of the object, and an object posture correction unit for correcting the posture of the object when the object posture comparison unit determines that there is a predetermined difference or more between the current posture and the optimum posture.
Abstract:
Provided is a robot device including an image input unit for inputting an image of surroundings, a target object detection unit for detecting an object from the input image, an object position detection unit for detecting a position of the object, an environment information acquisition unit for acquiring surrounding environment information of the position of the object, an optimum posture acquisition unit for acquiring an optimum posture corresponding to the surrounding environment information for the object, an object posture detection unit for detecting a current posture of the object from the input image, an object posture comparison unit for comparing the current posture of the object to the optimum posture of the object, and an object posture correction unit for correcting the posture of the object when the object posture comparison unit determines that there is a predetermined difference or more between the current posture and the optimum posture.
Abstract:
A control system, method and computer program product cooperate to assist control for an autonomous robot. An interface receives recognition information from an autonomous robot, said recognition information including candidate target objects to interact with the autonomous robot. A display control unit causes a display image to be displayed on a display of candidate target objects, wherein at least two of the candidate target objects are displayed with an associated indication of a target object score.
Abstract:
A control system, method and computer program product cooperate to assist control for an autonomous robot. An interface receives recognition information from an autonomous robot, said recognition information including candidate target objects to interact with the autonomous robot. A display control unit causes a display image to be displayed on a display of candidate target objects, wherein at least two of the candidate target objects are displayed with an associated indication of a target object score.
Abstract:
[Object] To provide an information processing apparatus, an information processing method, and a program capable of providing more useful information to a driver.[Solution] An information processing apparatus including: a prediction section configured to predict accident probability of a vehicle driven by a user; and an output control section configured to cause information to be output to the user, the information corresponding to a factor that increases the accident probability predicted by the prediction section.
Abstract:
There is provided a control device including an image display unit configured to acquire, from a flying body, an image captured by an imaging device provided in the flying body and to display the image, and a flight instruction generation unit configured to generate a flight instruction for the flying body based on content of an operation performed with respect to the image captured by the imaging device and displayed by the image display unit.
Abstract:
Provided is a robot device including an image input unit for inputting an image of surroundings, a target object detection unit for detecting an object from the input image, an object position detection unit for detecting a position of the object, an environment information acquisition unit for acquiring surrounding environment information of the position of the object, an optimum posture acquisition unit for acquiring an optimum posture corresponding to the surrounding environment information for the object, an object posture detection unit for detecting a current posture of the object from the input image, an object posture comparison unit for comparing the current posture of the object to the optimum posture of the object, and an object posture correction unit for correcting the posture of the object when the object posture comparison unit determines that there is a predetermined difference or more between the current posture and the optimum posture.
Abstract:
There is provided an information processing apparatus including a manipulation model learning unit configured to learn a manipulation model regarding manipulation of a first object by a second object, by use of an actual image that is an actually observed image including the first object and the second object, the manipulation model associating a position and a change in state of the second object, when a state of the second object changes at a position in an object reference coordinate system with the first object regarded as a reference, with a change in state of the first object caused by the change in state of the second object.