Surface-modified aramid fiber and preparation method therefor

    公开(公告)号:US11898303B2

    公开(公告)日:2024-02-13

    申请号:US17052903

    申请日:2018-05-10

    摘要: The present invention relates to a surface-modified aramid fiber and a method for preparing the same. The method includes the following steps: modifying an aramid fiber having amino groups and carboxyl groups on the surface with siloxane γ-glycidoxypropyltrimethoxysilane to obtain a silicon methoxylated aramid fiber; reacting same with a cerium oxide coated with polydopamine modified chaotic boron nitride to obtain a surface-modified aramid fiber. The cerium oxide coated with polydopamine modified chaotic boron nitride has high ultraviolet absorption, and has extremely low catalytic activity, avoiding the damage to a fiber structure by photocatalysis during radiation, being an effective, safe and highly-efficient ultraviolet absorber. The surface-modified aramid fiber provided in the present invention has an ultraviolet-resistant function, high surface activity, good thermal performance, and better mechanical performance, providing excellent overall performance, and having higher utilization value. The method is simple and controllable, being suitable for large scale production.

    Super-hydrophobic electrothermal epoxy resin composite material and preparation and self-repairing method therefor

    公开(公告)号:US11739067B2

    公开(公告)日:2023-08-29

    申请号:US17003569

    申请日:2020-08-26

    IPC分类号: C07D327/00 C08J7/04

    摘要: Superhydrophobic electrothermal epoxy composites, their preparation and a self-healing method are disclosed. 1,4,5-oxadithiepane-2,7-dione and methylhexahydrophthalic anhydride were mixed and cured with epoxides to get self-healable epoxy resins; carbon nanotube/self-healable epoxy resin prepolymers were coated on self-healable epoxy resins and cured to get electrothermal epoxy composites; modified superhydrophobic copper powders were adhered on electrothermal epoxy composites and cured to get a kind of superhydrophobic electrothermal epoxy composites. The thermal resistance of superhydrophobic electrothermal epoxy composites is superior to existed technical solutions and they can simultaneously repair cracking and delamination and the healed samples still exhibit excellent superhydrophobicity. These merits of superhydrophobic electrothermal epoxy composites provided in this invention can meet the harsh requirements of self-healing and removing ice on surfaces of wind turbine blades, suggesting good abilities of guaranteeing service safety and lifespan of wind turbine blades.

    Reversible self-repairing epoxy resin and preparation and recovery remoulding method therefor

    公开(公告)号:US11193000B2

    公开(公告)日:2021-12-07

    申请号:US16759327

    申请日:2018-02-27

    摘要: This invention provides a self-healable epoxy resin and its preparation, recycling and remolding method. With the catalyst of potassium iodide, an ester solution of 2-mercaptoacetic acid was oxidated by 30% H2O2 to form 2,2′-dithiodiacetic acid; then 2,2′-dithiodiacetic acid was dehydrated and cyclizated by anhydride to form 1,4,5-oxadithiepane-2,7-dione; 1,4,5-oxadithiepane-2,7-dione and methylhexahydrophthalic anhydride were mixed by mass ratio and cured with epoxides to get the self-healable epoxy resin. Through controlling dynamic and permanent three-dimensional crosslinked network, the self-healable epoxy resins provided in this invention exhibit high thermal resistance and improved mechanical properties as well as excellent self-healing ability, recyclability and remoldability. This invention provides a preparation method with the merits of low cost, simple production processes, broad application prospects and strong utility.

    Flame-retardant bismaleimide resin and preparation method thereof

    公开(公告)号:US10738144B2

    公开(公告)日:2020-08-11

    申请号:US16314907

    申请日:2016-12-03

    摘要: Disclosed are a flame-retardant bismaleimide resin and a preparation method thereof comprising: forming an eugenol salt suspensoid from a whole biomass eugenol in the present of a strong alkali metal base, adding dropwisely a solution of phosphorus oxychloride in methyl chloride to react to obtain a biomass-based phosphate flame-retardant; mixing bismaleimide, 2,2′-diallylbisphenol with the obtained phosphate, curing and posttreating to obtain the flame-retardant bismaleimide resin. Compared with petroleum-based bismaleimide resin, the flame-retardant bismaleimide resin prepared by the present invention is obtained from eugenol derived from biomass, and the raw material is green and renewable. It maintains mechanical properties and processing properties of the petroleum-based bismaleimide resin and has an excellent flame-retardant property. The preparation method provided by the invention has the advantages of low cost and simple production process, and has wide application prospect in the fields of aerospace, electronic information, electrical insulation and the like.