Abstract:
A method and system for presenting information representative of lesion formation is provided. The system comprises an electronic control unit (ECU). The ECU is configured to acquire a value for an ablation description parameter and/or a position signal metric, wherein the value corresponds to a location in the tissue. The ECU is further configured to evaluate the value, assign it a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generate a marker comprising the visual indicator such that the marker is indicative of the acquired value. The method comprises acquiring a value for the parameter/metric, and evaluating the value. The method further includes assigning a visual indicator of a visualization scheme associated with the parameter/metric corresponding to the value, and generating a marker comprising the visual indicator.
Abstract:
A catheter assembly for assessing contact between the catheter assembly and tissue is disclosed. The assembly includes a catheter shaft and a pressure sensitive conductive composite member whose electrical resistance varies with pressure applied to the catheter assembly. The assembly also includes at least one measurement terminal to permit the measurement of changes in the electrical characteristics of the pressure sensitive conductive composite member. The assembly may optionally include a measurement device to measure resistance, impedance and/or other electrical characteristics. The assembly may utilize a reference electrode secured to the patient's tissue, which permits the measurement device to measure changes between the reference electrode and the at least one measurement terminal. Optionally, the assembly may include a conductive outer layer. Also disclosed are sensor assemblies, contact sensor, methods of contact sensing, and methods of manufacturing relating to the use of pressure sensitive conductive composites.
Abstract:
A medical device utilizing temperature sensing to identify or assess anatomical bodies or structures includes an elongate tubular member, at least one electrode, a thermal sensor, and a temperature response assessment system or component. The at least one electrode may be connected to the distal portion of the elongate tubular member, and the one or more electrode can be configured to provide energy or heat to a portion of an anatomical body or structure. The thermal sensor may be configured to measure the thermal response of the portion of an anatomical body or structure, e.g., tissue or blood pools. The temperature response assessment system or component can be coupled to the thermal sensor. In embodiments, the device may include a lumen and port opening, which may accommodate a tool, such as a needle. Methods for using temperature sensing to identify an anatomical body or structure are also disclosed.
Abstract:
A photodynamic mapping device includes a shaft with a proximal end and a distal end, at least one optical electrode at the distal end of the shaft, and at least one optical fiber positioned inside the shaft. In embodiments, the at least one optical fiber extends from the distal end of the shaft and is coupled to the at least one optical electrode provided at or about an outer surface of the device. In an embodiment, at least one optical fiber is coupled, at or about the proximal end of the shaft, to a light source coupled and an optical sensor. An analyzer can be coupled to the optical sensor. Embodiments of such devices can be configured to deliver substances, such as photodynamic therapeutic substances.
Abstract:
Disclosed herein are ablation systems and methods for providing feedback on lesion formation in real-time. The methods and systems assess absorptivity of tissue based on a degree of electric coupling or contact between an ablation electrode and the tissue. The absorptivity can then be used, along with other information, including, power levels and activation times, to provide real-time feedback on the lesions being created. Feedback may be provided, for example, in the form of estimated lesion volumes and other lesion characteristics. The methods and systems can provide estimated treatment times to achieve a desired lesion characteristic for a given degree of contact, as well as depth of a lesion being created. The degree of contact may be measured using different techniques, including the phase angle techniques and a coupling index.
Abstract:
A method and system for assessing lesion formation in tissue is provided. The system includes an electronic control unit (ECU). The ECU is configured to acquire values for first and second components of a complex impedance between the electrode and the tissue, and to calculate an index responsive to the first and second values. The ECU is further configured to process the ECI to assess lesion formation in the tissue.
Abstract:
An electrode coupling output system associated with an electrode catheter that provides indication to the physician via the navigation system, concerning the electrical coupling of an electrode, such as an ablative or mapping electrode, with a patient. The indication may be provided by changing the color or other display characteristics of the electrode on the navigation system display or by way of providing a waveform indicating the electrode coupling. In this manner, electrode coupling information is provided to a physician in a manner that minimizes physician distraction.
Abstract:
Catheter systems include direction-sensitive, multi-polar tip electrode assemblies for electroporation-mediated therapy, electroporation-induced primary necrosis therapy and electric field-induced apoptosis therapy, including configurations for producing narrow, linear lesions as well as distributed, wide area lesions. A monitoring system for electroporation therapy includes a mechanism for delivering electrochromic dyes to a tissue site as well as a fiber optic arrangement to optically monitor the progress of the therapy as well as to confirm success post-therapy. A fiber optic temperature sensing electrode catheter includes a tip electrode having a cavity whose inner surface is impregnated or coated with thermochromic/thermotropic material that changes color with changes in temperature. An optic fiber/detector arrangement monitors the thermochromic or thermotropic materials, acquiring a light signal and generating an output signal indicative of the spectrum of the light signal. An analyzer determines an electrode temperature based on the detector output and predetermined spectrum versus temperature calibration data.
Abstract:
A monitoring, managing and protecting system is provided that includes a monitoring probe working in conjunction with an ablating device. The probe is configured to be positioned in close proximity to a region of non-targeted tissue proximate an ablation site of targeted tissue and to be operatively connected to an electrical response assessment system or component. The probe includes an elongate shaft having proximal and distal ends, with a handle disposed at the proximal end thereof and a tissue monitoring and protecting apparatus disposed at the distal end thereof. The ablating device includes an elongate shaft having proximal and distal ends, with a handle mounted at the proximal end thereof and an ablation element mounted at the distal end thereof. The monitoring probe measures electrical characteristics of the non-targeted tissue and/or of the tissue between the monitoring electrode and the ablation electrode. The electrical response assessment system determines whether the tissue is being damaged based on the electrical measurements. The monitoring, managing and protecting system can notify a practitioner based on the determination, or modify or stop the ablation procedure.
Abstract:
Systems and methods are disclosed for assessing tissue contact, e.g., for mapping, tissue ablation, or other procedures. An exemplary tissue contact sensing system comprises a flexible tip device. At least one piezoelectric sensor is housed within the flexible tip device. The at least one piezoelectric sensor is responsive to contact stress of the flexible tip device by generating electrical signals corresponding to the amount of contact stress. An output device is electrically connected to the at least one piezoelectric sensor. The output device receives the electrical signals for assessing tissue contact by the flexible tip device. Methods for assembling and using the flexible tip device are also disclosed.