Abstract:
An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer. An electrical discontinuity between a first via of the via level and a first metal track of the lower metallization level is provided at the level of the insulating encapsulation layer. The electrical discontinuity is formed prior to formation of any via of the via level and prior to any metal track of the upper metallization level. The electrical discontinuity may comprise: a portion of an additional insulating layer extending over the insulating encapsulation layer; a portion of the insulating encapsulation layer; or an insulating oxide on a top surface of the first metal track.
Abstract:
An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer and an inter-metallization level insulating layer. An electrical discontinuity is provided between a via of the via level and a metal track of the lower metallization level. The electrical discontinuity is formed by an additional insulating layer having a material composition identical to that of the inter-metallization level insulating layer. The electrical discontinuity is situated between a bottom of the via and a top of the metal track, with the discontinuity being bordered by the insulating encapsulation layer.
Abstract:
A method for processing content stored on a component is disclosed. A first partition of a first memory is encrypted with a first encryption key and a second partition of the first memory is encrypted with a second encryption key. The second encryption key is different from the first encryption key. The first encryption key is stored in a storage register of the component and the second encryption key is stored in a first location of a non-volatile memory. A memory address of the first location is stored in the first partition of the first memory.
Abstract:
A method for processing content stored on a component is disclosed. A first partition of a first memory is encrypted with a first encryption key and a second partition of the first memory is encrypted with a second encryption key. The second encryption key is different from the first encryption key. The first encryption key is stored in a storage register of the component and the second encryption key is stored in a first location of a non-volatile memory. A memory address of the first location is stored in the first partition of the first memory.
Abstract:
A system for detecting a laser attack on an integrated circuit chip formed in a semiconductor substrate, including a detection device capable of detecting voltage variations of the substrate. The system includes P-type first wells and N-type second wells extending in a P-type upper portion of the substrate; an N-type buried layer extending under at least a portion of the first and second wells; biasing contacts for the second wells and the buried layer; ground contacts for the first wells; and substrate contacts for detecting a substrate voltage, the detection contacts surrounding the first and second wells. The detection device comprises a resistor having a first terminal connected to said ground contacts of the first wells and a second terminal connected to said substrate contacts; and a comparator connected in with the resistor configured to detect a potential difference across the resistor.
Abstract:
A method for detecting a writing error of a datum in memory includes: storing at least two parts of equal size of a binary word representative of said datum at the same address in at least two identical memory circuits, and comparing internal control signals of the two memory circuits to determine existence of the writing error.
Abstract:
The physically unclonable function device (DIS) comprises a set of MOS transistors (TR1i, TR2j) mounted in diodes having a random distribution of respective threshold voltages, and comprising N first transistors and at least one second transistor. At least one output node of the function is capable of delivering a signal, the level of which depends on the comparison between a current obtained using a current circulating in the at least one second transistor and a current obtained using a reference current that is equal or substantially equal to the average of the currents circulating in the N first transistors. A first means (FM1i) is configured to impose on each first transistor a respective fixed gate voltage regardless of the value of the current circulating in the first transistor, and a second means (SM2j) is configured to impose a respective fixed gate voltage on each second transistor regardless of the value of the current circulating in the second transistor.
Abstract:
An integrated device for physically unclonable functions is based on a set of MOS transistors exhibiting a random distribution of threshold voltages which are obtained by lateral implantations of dopants exhibiting non-predictable characteristics, resulting from implantations through a polysilicon layer. A certain number of these transistors form a group of gauge transistors which makes it possible to define a mean gate source voltage making it possible to bias the gates of certain others of these transistors (which are used to define the various bits of the unique code generated by the function). All these transistors consequently exhibit a random distribution of drain-source currents and a comparison of each drain-source current of a transistor associated with a bit of the digital code with a reference current corresponding to the average of this distribution makes it possible to define the logical value 0 or 1 of this bit.
Abstract:
A method for processing content stored on a component is disclosed. A first partition of a first memory is encrypted with a first encryption key and a second partition of the first memory is encrypted with a second encryption key. The second encryption key is different from the first encryption key. The first encryption key is stored in a storage register of the component and the second encryption key is stored in a first location of a non-volatile memory. A memory address of the first location is stored in the first partition of the first memory.
Abstract:
A circuit includes a first processing unit and a second identical processing unit. A first communication bus passes encrypted data between one of a plurality of functions and one or both of the first and second processing units. A selection circuit determines whether the encrypted bus is coupled to the first processing unit, the second processing unit, or both of the first and second processing units.