Abstract:
An inertial sensor having a body with an excitation coil and a first sensing coil extending along a first axis. A suspended mass includes a magnetic-field concentrator, in a position corresponding to the excitation coil, and configured for displacing by inertia in a plane along the first axis. A supply and sensing circuit is electrically coupled to the excitation coil and to the first sensing coil, and is configured for generating a time-variable flow of electric current that flows in the excitation coil so as to generate a magnetic field that interacts with the magnetic-field concentrator to induce a voltage/current in the sensing coil. The integrated circuit is configured for measuring a value of the voltage/current induced in the first sensing coil so as to detect a quantity associated to the displacement of the suspended mass along the first axis.
Abstract:
An IC may include a semiconductor substrate having circuitry formed in the substrate, an interconnect layer above the semiconductor substrate and having an antenna coupled to the circuitry, and a seal ring around a periphery of the interconnect layer. The IC may include an electrically insulating trench extending vertically into the semiconductor substrate and extending laterally across the semiconductor substrate from adjacent one side to adjacent another side.
Abstract:
Embodiments are directed to electrically confined ballistic devices, circuits, and networks. One such device includes a heterostructure that has a first semiconductor layer, a second semiconductor layer, and a two-dimensional electrode gas (2DEG) layer between the first and second semiconductor layers. The device further includes an input electrode electrically coupled to the 2DEG layer and an output electrode electrically coupled to the 2DEG layer. A first confinement electrode is positioned on the heterostructure. The first confinement electrode, in use, generates first space charge regions which at least partially define a boundary of the ballistic device within the 2DEG layer between the input electrode and the output electrode in response to a first voltage.
Abstract:
A device includes a particle propagation channel, a particle deflector, a particle source, and a particle sink. The particle deflector facilitates ballistic transport of particles from a particle inflow portion through a particle flow deflection portion to a particle outflow portion. The particle deflector is arranged at the particle flow deflection portion and is activatable to deflect particles in the flow deflection portion and is configured to selectively prevent the particles from reaching the particle outflow portion. The particle source and particle sink are configured to cause a current path of the particles through the device.
Abstract:
A microelectromechanical sensing structure having a membrane region including a membrane that undergoes deformation as a function of a pressure and a first actuator that is controlled in a first operating mode and a second operating mode, the first actuator being such that, when it operates in the second operating mode, it contacts the membrane region and deforms the membrane in a way different from when it operates in the first operating mode.
Abstract:
An embodiment of a test apparatus for executing a test of a set of electronic devices having a plurality of electrically conductive terminals, the test apparatus including a plurality of electrically conductive test probes for exchanging electrical signals with the terminals, and coupling means for mechanically coupling the test probes with the electronic devices. In an embodiment, the coupling means includes insulating means for keeping each one of at least part of the test probes electrically insulated from at least one corresponding terminal during the execution of the test. Each test probe and the corresponding terminal form a capacitor for electro-magnetically coupling the test probe with the terminal.
Abstract:
The integrated electronic device is for detecting a local parameter related to a force observed in a given direction, within a solid structure. The device includes at least one sensor configured to detect the above-mentioned local parameter at least in the given direction through piezo-resistive effect. At least one damping element, integrated in the device, is arranged within a frame-shaped region that is disposed around the at least one sensor and belongs to a substantially planar region comprising a plane passing through the sensor and perpendicular to the given direction. Such at least one damping element is configured to damp forces acting in the planar region and substantially perpendicular to the given direction.
Abstract:
An embodiment of a probe card adapted for testing at least one integrated circuit integrated on a corresponding at least one die of a semiconductor material wafer, the probe card including a board adapted for the coupling to a tester apparatus, and a plurality of probes coupled to the said board, wherein the probe card comprises a plurality of replaceable elementary units, each one comprising at least one of said probes for contacting externally-accessible terminals of an integrated circuit under test, the plurality of replaceable elementary units being arranged so as to correspond to an arrangement of at least one die on the semiconductor material wafer containing integrated circuits to be tested.
Abstract:
A pressure sensing device may include a body configured to distribute a load applied between first and second parts positioned one against the other, and a pressure sensor carried by the body. The pressure sensor may include a support body, and an IC die mounted with the support body and defining a cavity. The IC die may include pressure sensing circuitry responsive to bending associated with the cavity, and an IC interface coupled to the pressure sensing circuitry.
Abstract:
The integrated electronic device detects the pressure related to a force applied in a predetermined direction within a solid structure. The device includes an integrated element that is substantially orthogonal to the direction of application of the force. First and second conductive elements are configured to face an operating surface. A measure module includes first and second measurement terminals which are electrically connected to the first and second conductive elements, respectively. A detecting element is arranged in the predetermined direction such that the operating surface is sandwiched between the first and second conductive elements and this detecting element. An insulating layer galvanically insulates the first and second conductive elements. A layer of dielectric material is sandwiched between the detecting element and the insulating layer, and is elastically deformable following the application of the force to change an electromagnetic coupling between the detecting element and the first and second conductive elements.