Abstract:
A transmission channel transmits high-voltage pulses and receives echos of the high-voltage pulses. The transmission channel includes a current generator circuit, which generates current-integrator drive currents. The control circuitry generates one or more control signals to control generation of current-integrator drive currents by the current generator circuit during transducer-driving periods. A current integrator integrates current-integrator drive currents generated by current generator circuit to generate transducer drive signals.
Abstract:
A process for manufacturing MEMS devices, includes forming a first assembly, which comprises: a dielectric region; a redistribution region; and a plurality of unit portions. Each unit portion of the first assembly includes: a die arranged in the dielectric region; and a plurality of first and second connection elements, which extend to opposite faces of the redistribution region and are connected together by paths that extend in the redistribution region, the first connection elements being coupled to the die. The process further includes: forming a second assembly which comprises a plurality of respective unit portions, each of which includes a semiconductor portion and third connection elements; mechanically coupling the first and second assemblies so as to connect the third connection elements to corresponding second connection elements; and then removing at least part of the semiconductor portion of each unit portion of the second assembly, thus forming corresponding membranes.
Abstract:
Described herein is a transceiver circuit for a capacitive micromachined ultrasonic transducer (CMUT), provided with: a transmitter stage, which generates excitation pulses for a first node of the CMUT transducer during a transmitting phase, a second node of the CMUT transducer being coupled to a biasing voltage; a receiver stage that is selectively coupled to the first node during a receiving phase and has an amplification stage; a switching stage that couples the receiver stage to the first node during the receiving phase and decouples the receiver stage from the first node during the transmitting phase. The amplification stage is provided with a charge amplifier that has an input terminal and is biased as a function of a biasing voltage; and the switching stage is coupled to the same biasing voltage thereby minimizing an injection of charge into the input terminal upon switching from the transmitting phase to the receiving phase.
Abstract:
A low voltage isolation switch is suitable for receiving from a connection node a high voltage signal and transmitting said high voltage signal to a load via a connection terminal. The isolation switch includes a driving block connected between first and second voltage reference terminals and including a first driving transistor coupled between the first voltage reference (Vss) and a first driving circuit node and a second driving transistor coupled between the driving circuit node and the second supply voltage reference. The switch comprises an isolation block connected to the connection terminal (pzt), the connection node, and the driving central circuit node and including a voltage limiter block, a diode block and a control transistor. The control transistor is connected across the diode block between the connection node and the connection terminal and has a control terminal connected to the driving central circuit node.
Abstract:
A PMUT device includes a membrane element extending perpendicularly to a first direction and configured to generate and receive ultrasonic waves by oscillating about an equilibrium position. At least two piezoelectric elements are included, with each one located over the membrane element along the first direction and configured to cause the membrane element to oscillate when electric signals are applied to the piezoelectric element, and generate electric signals in response to oscillations of the membrane element. The membrane element has a lobed shape along a plane perpendicular to the first direction, with the lobed shape including at least two lobes. The membrane element includes for each piezoelectric member a corresponding membrane portion including a corresponding lobe, with each piezoelectric member being located over its corresponding membrane portion.
Abstract:
A PMUT device includes a membrane element adapted to generate and receive ultrasonic waves by oscillating, about an equilibrium position, at a corresponding resonance frequency. A piezoelectric element is located over the membrane element along a first direction and configured to cause the membrane element to oscillate when electric signals are applied to the piezoelectric element, and generate electric signals in response to oscillations of the membrane element. A damper is configured to reduce free oscillations of the membrane element, and the damper includes a damper cavity surrounding the membrane element, and a polymeric member having at least a portion over the damper cavity along the first direction.
Abstract:
A microelectromechanical membrane transducer includes: a supporting structure; a cavity formed in the supporting structure; a membrane coupled to the supporting structure so as to cover the cavity on one side; a cantilever damper, which is fixed to the supporting structure around the perimeter of the membrane and extends towards the inside of the membrane at a distance from the membrane; and a damper piezoelectric actuator set on the cantilever damper and configured so as to bend the cantilever damper towards the membrane in response to an electrical actuation signal.
Abstract:
Described herein is a transceiver circuit for a capacitive micromachined ultrasonic transducer (CMUT), provided with: a transmitter stage, which generates excitation pulses for a first node of the CMUT transducer during a transmitting phase, a second node of the CMUT transducer being coupled to a biasing voltage; a receiver stage that is selectively coupled to the first node during a receiving phase and has an amplification stage; a switching stage that couples the receiver stage to the first node during the receiving phase and decouples the receiver stage from the first node during the transmitting phase. The amplification stage is provided with a charge amplifier that has an input terminal and is biased as a function of a biasing voltage; and the switching stage is coupled to the same biasing voltage thereby minimizing an injection of charge into the input terminal upon switching from the transmitting phase to the receiving phase.
Abstract:
A transmission channel transmits high-voltage pulses and receives echos of the high-voltage pulses. The transmission channel includes a current generator circuit, which generates current-integrator drive currents, a receiver, which amplifies transducer-echo signals, and control circuitry. The control circuitry generates one or more control signals to control generation of current-integrator drive currents by the current generator circuit during transducer-driving periods and reception of transducer-echo signals by the receiver during echo-reception periods. A current integrator integrates current-integrator drive currents generated by current generator circuit to generate transducer drive signals.