Abstract:
An ultrasonic probe includes: an ultrasonic transducer; an amplification stage; a bias circuit, which determines a bias voltage on an input terminal of the amplification stage; and a selector having an intermediate node, a high-voltage switch between the intermediate node and the transducer, and a first low-voltage switch between the intermediate node and the input terminal. A control unit controls the high-voltage switch and the first low-voltage switch so as to alternately couple and decouple the amplification stage and the transducer. A precharge circuit determines a precharge voltage on the intermediate node as a function of the bias voltage, before the amplification stage and the transducer are coupled.
Abstract:
A transmission channel transmits high-voltage pulses and receives echos of the high-voltage pulses. The transmission channel includes a current generator circuit, which generates current-integrator drive currents. The control circuitry generates one or more control signals to control generation of current-integrator drive currents by the current generator circuit during transducer-driving periods. A current integrator integrates current-integrator drive currents generated by current generator circuit to generate transducer drive signals.
Abstract:
An ultrasonic probe includes: an ultrasonic transducer; an amplification stage; a bias circuit, which determines a bias voltage on an input terminal of the amplification stage; and a selector having an intermediate node, a high-voltage switch between the intermediate node and the transducer, and a first low-voltage switch between the intermediate node and the input terminal. A control unit controls the high-voltage switch and the first low-voltage switch so as to alternately couple and decouple the amplification stage and the transducer. A precharge circuit determines a precharge voltage on the intermediate node as a function of the bias voltage, before the amplification stage and the transducer are coupled.
Abstract:
A device for emitting an ultrasound acoustic wave in a propagation medium, comprising: a package including a base substrate and a cap coupled to the base substrate and defining therewith a chamber in the package; a semiconductor die, coupled to the base substrate in the chamber, comprising a semiconductor body; a micromachined ultrasonic transducer (MUT) integrated at least in part in the semiconductor body and including a cavity in the semiconductor body and a membrane suspended over the cavity; and an actuator, operatively coupled to the membrane, which can be operated for generating a deflection of the membrane. The membrane is designed in such a way that a resonance frequency thereof matches an acoustic resonance frequency that, during operation of the MUT, develops in said chamber of the package.
Abstract:
A process for manufacturing MEMS devices, includes forming a first assembly, which comprises: a dielectric region; a redistribution region; and a plurality of unit portions. Each unit portion of the first assembly includes: a die arranged in the dielectric region; and a plurality of first and second connection elements, which extend to opposite faces of the redistribution region and are connected together by paths that extend in the redistribution region, the first connection elements being coupled to the die. The process further includes: forming a second assembly which comprises a plurality of respective unit portions, each of which includes a semiconductor portion and third connection elements; mechanically coupling the first and second assemblies so as to connect the third connection elements to corresponding second connection elements; and then removing at least part of the semiconductor portion of each unit portion of the second assembly, thus forming corresponding membranes.
Abstract:
An acoustic device includes a micro-machined acoustic transducer element, an acoustically attenuating region, and an acoustic matching region arranged between the acoustic transducer element and the acoustically attenuating region. The acoustic transducer element is formed in a first substrate housing a cavity delimiting a membrane. A second substrate of semiconductor material integrating an electronic circuit is arranged between the acoustic transducer element and the acoustically attenuating region. The acoustic matching region has a first interface with the second substrate and a second interface with the acoustically attenuating region. The acoustic matching region has an impedance matched to the impedance of the second substrate in proximity of the first interface, and an impedance matched to the acoustically attenuating region in proximity of the second interface.
Abstract:
A piezoelectric microelectromechanical structure is provided with a piezoelectric stack having a main extension in a horizontal plane and a variable section in a plane transverse to the horizontal plane. The stack is formed by a bottom-electrode region, a piezoelectric material region arranged on the bottom-electrode region, and a top-electrode region arranged on the piezoelectric material region. The piezoelectric material region has, as a result of the variable section, a first thickness along a vertical axis transverse to the horizontal plane at a first area, and a second thickness along the same vertical axis at a second area. The second thickness is smaller than the first thickness. The structure at the first and second areas can form piezoelectric detector and a piezoelectric actuator, respectively.
Abstract:
The MEMS actuator is formed by a substrate, which surrounds a cavity; by a deformable structure suspended on the cavity; by an actuation structure formed by a first piezoelectric region of a first piezoelectric material, supported by the deformable structure and configured to cause a deformation of the deformable structure; and by a detection structure formed by a second piezoelectric region of a second piezoelectric material, supported by the deformable structure and configured to detect the deformation of the deformable structure.
Abstract:
A programmable-gain amplifier includes: two complementary cross-coupled transistor pairs mutually coupled with each transistor in one pair having a current flow path cascaded with a current flow path of a respective one of the transistors in the other pair. First and second coupling points are formed between the pairs; with first and second sampling capacitors coupled thereto. First and second input stages have input terminals to input signals for sampling by the first and second sampling capacitors. Switching means couple the first and second input stages to the sampling capacitors so the input signals are sampled as sampled signals on the sampling capacitors. The switching means energizes the complementary cross-coupled transistor pairs so the signals sampled on the sampling capacitors undergo negative resistance regeneration growing exponentially over time to thereby provide an exponential amplifier gain.
Abstract:
A programmable-gain amplifier includes: two complementary cross-coupled transistor pairs mutually coupled with each transistor in one pair having a current flow path cascaded with a current flow path of a respective one of the transistors in the other pair. First and second coupling points are formed between the pairs; with first and second sampling capacitors coupled thereto. First and second input stages have input terminals to input signals for sampling by the first and second sampling capacitors. Switching means couple the first and second input stages to the sampling capacitors so the input signals are sampled as sampled signals on the sampling capacitors. The switching means energizes the complementary cross-coupled transistor pairs so the signals sampled on the sampling capacitors undergo negative resistance regeneration growing exponentially over time to thereby provide an exponential amplifier gain.