Abstract:
An electronic chip includes memory cells made of a phase-change material and a transistor. First and second vias extend from the transistor through an intermediate insulating layer to a same height. A first metal level including a first interconnection track in contact with the first via is located over the intermediate insulating layer. A heating element for heating the phase-change material is located on the second via, and the phase-change material is located on the heating element. A second metal level including a second interconnection track is located above the phase-change material. A third via extends from the phase-change material to the second interconnection track.
Abstract:
A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
Abstract:
A semiconductor substrate includes a photodiode region, a charge storage region electrically coupled to the photodiode region and a capacitive deep trench isolation (CDTI) structure including a conductive region positioned between the photodiode region and the charge storage region. A contact etch stop layer overlies the semiconductor substrate and a premetallization dielectric layer overlies the contact etch stop layer. A first trench, filled with a metal material, extends through the premetallization dielectric layer and bottoms out at or in the contact etch stop layer. A second trench, also filled with the metal material, extends through the premetallization dielectric layer and the contact etch stop layer and bottoms out at or in the conductive region of the CDTI structure. The metal filled first trench forms an optical shield between the photodiode region and the charge storage region. The metal filled second trench forms a contact for biasing the CDTI structure.
Abstract:
A back-illuminated integrated imaging device is formed from a semiconductor substrate including a zone of pixels bounded by capacitive deep trench isolations. A peripheral zone is located outside the zone of pixels. A continuous electrically conductive layer forms, in the zone of pixels, an electrode in a trench for each capacitive deep trench isolation, and forms, in the peripheral zone, a redistribution layer for electrically coupling the electrode to a biasing contact pad. The electrode is located in the trench between a trench dielectric and at least one material for filling the trench.
Abstract:
A method for manufacturing an image sensor, including the successive steps of: forming columns of a semiconductor material; forming one or several pixels at a first end of each of the columns; and deforming the structure so that the second ends of each of the columns come closer to each other or draw away from each other to form a surface in the shape of a polyhedral cap.