Abstract:
A display device and a driving method for converting a low-resolution image into a high-resolution image and preventing a visible boundary between partitioned display areas are disclosed. One inventive aspect includes a display panel, a dividing control unit and a scaler. The display panel includes panel areas. The dividing control unit divides an input image into sub-images and the scaler scales the sub-images. The inventive aspect further includes an extra image removing unit and a driver. The extra image removing unit removes an scaled extra image from the scaled sub-image so that the driver provides the processed sub-image to the corresponding panel area.
Abstract:
Gamma applied data generating circuit includes motion vector extractor, gamma pattern generator, first gamma applier, second gamma applier, and output converter. Motion vector extractor extracts motion vector of object. Gamma pattern generator generates first gamma pattern corresponding to first motion vector value and second gamma pattern corresponding to second motion vector value from first time point. Value of motion vector is changed from first motion vector value to second motion vector value at first time point. First and second gamma appliers generate first and second data by applying first and second gamma pattern to input data, respectively. Output converter outputs sum of first data times first weight and second data times second weight as gamma applied data. From first time point to second time point, output converter converts first weight from 1 to 0 and converts second weight from 0 to 1.
Abstract:
An organic light emitting display includes a plurality of pixels and a timing controller. The timing controller accumulates emission luminance values during a plurality of frames. The timing controller then supplies a reset signal to the pixels to respectively set non-emission periods for a plurality of subfields when the accumulated emission luminance value exceeds a reference value.